The mechanisms of the hydrolyses of N-nitrobenzenesulfonamides, N-nitrobenzamides and some other N-nitro amides in aqueous sulfuric acid[hair space]1

(Note: The full text of this document is currently only available in the PDF Version )

Robin A. Cox


Abstract

The mechanisms of the hydrolysis reactions of some N-nitrobenzenesulfonamides (YC6H4SO2NHNO2), N-nitrobenzamides (YC6H4CONHNO2) and N-methyl-N-nitrobenzamides (YC6H4CON(CH3)NO2) have been determined in aqueous sulfuric acid using the excess acidity method. Also studied were N-methyl-N-nitroacetamide and nitrourea, with N,N-dinitromethylamine for comparison. N-Nitrobenzenesulfonamides give either YC6H4SO2+ and NH2NO2 (electron-donating Y) or YC6H4SO2NH2 and NO2+ (electron-withdrawing Y) in A1 processes; the change in product is reflected in the different ρ+ values found for the two modes of cleavage. N-Nitrobenzamides behave similarly in strong acid, with an A1 reaction following presumed O-protonation, but in more moderate acid they exhibit a neutral water-catalysed hydrolysis mechanism, and in dilute acid the parent N-nitrobenzamides actually show hydroxide catalysis. N-Methyl-N-nitroacetamide shows only the neutral water-catalysed process. Nitrourea has an A1 acid-catalysed hydrolysis reaction in acid, analogous to the known B1 mechanism in base (also visible in dilute sulfuric acid), but has no water reaction; the pH-rate profile for the hydrolysis of this substance is here extended into the non-ideal acid region. N,N-Dinitromethylamine loses NO2+ in an A1 process following initial nitro-group protonation, giving N-nitromethylamine which is identifiable by its known hydrolysis rate. Activation parameters, m*m slopes and ρ+ values given by the excess acidity analysis are shown to be compatible with the postulated mechanisms.


References

  1. R. A. Cox, presented in part at the 6th International Meeting on Reaction Mechanisms, Canterbury, England, July, 1996. Part 20 of a series on reaction mechanisms in strong acids, of which parts 18 and 19 are refs. 25 and 26.
  2. M. Liler, Reaction Mechanisms in Sulphuric Acid, Academic Press, London, 1971, p. 189 Search PubMed.
  3. E.g.T. W. G. Solomons, Organic Chemistry, 6th edn., Wiley, New York, 1996, p. 824 Search PubMed; J. March, Advanced Organic Chemistry, 4th edn., Wiley, New York, 1992, p. 385 Search PubMed; T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, 3rd edn., Harper and Row, New York, 1987, p. 714 Search PubMed; N. S. Isaacs, Physical Organic Chemistry, Longman Scientific and Technical, Harlow, 1987, p. 484 Search PubMed.
  4. R. A. Cox and K. Yates, Can. J. Chem., 1981, 59, 2853 CAS.
  5. R. A. McClelland, J. Am. Chem. Soc., 1975, 97, 5281 CrossRef CAS.
  6. P. Wan, T. A. Modro and K. Yates, Can. J. Chem., 1980, 58, 2423 CAS.
  7. A. J. Bennet, H. Slebocka-Tilk and R. S. Brown, J. Am. Chem. Soc., 1992, 114, 3088 CrossRef CAS.
  8. T. A. Modro, K. Yates and F. Beaufays, Can. J. Chem., 1977, 55, 3050 CAS; T. Yamana, Y. Mizukami, A. Tsuji and M. Ikuta, Chem. Pharm. Bull., 1972, 20, 1778 CAS.
  9. B. C. Challis and S. P. Jones, J. Chem. Soc., Perkin Trans. 2, 1975, 153 RSC.
  10. S. N. Leiman, A. A. Astrat'ev, L. L. Kuznetsov and V. F. Selivanov, Zh. Org. Khim., 1979, 15, 2259 CAS; Russ. J. Org. Chem. (Engl. Transl.), 1979, 15, 2047 Search PubMed.
  11. O. A. Drozdova, A. A. Astrat'ev, L. L. Kuznetsov and V. F. Selivanov, Zh. Org. Khim., 1982, 18, 2335 CAS; Russ. J. Org. Chem. (Engl. Transl.), 1982, 18, 2063 Search PubMed.
  12. O. A. Drozdova, A. A. Astrat'ev, L. L. Kuznetsov and V. F. Selivanov, Zh. Org. Khim., 1983, 19, 766; Russ. J. Org. Chem. (Engl. Transl.), 1983, 19, 675 Search PubMed.
  13. B. C. Challis, E. Rosa, J. Iley and F. Norberto, J. Chem. Soc., Perkin Trans. 2, 1990, 179 RSC.
  14. F. Dewhurst and A. H. Lamberton, J. Chem. Soc. B, 1971, 788 RSC.
  15. B. Boopsingh and J. M. Briody, J. Chem. Soc., Perkin Trans. 2, 1972, 1487 RSC.
  16. A. A. Glukhov, L. L. Kuznetsov and B. V. Gidaspov, Zh. Org. Khim., 1983, 19, 704 CAS; Russ. J. Org. Chem. (Engl. Transl.), 1983, 19, 620 Search PubMed.
  17. O. A. Drozdova, A. A. Astrat'ev, L. L. Kuznetsov and V. F. Selivanov, Zh. Org. Khim., 1983, 19, 761 CAS; Russ. J. Org. Chem. (Engl. Transl.), 1983, 19, 671 Search PubMed.
  18. R. A. Cox, Acc. Chem. Res., 1987, 20, 27 CrossRef CAS.
  19. J.-P. Bégué, F. Benayoud, D. Bonnet-Delpon, A. D. Allen, R. A. Cox and T. T. Tidwell, Gazz. Chim. Ital., 1995, 125, 399 CAS.
  20. R. A. Cox, D. B. Moore and R. S. McDonald, Can. J. Chem., 1994, 72, 1910 CAS.
  21. Y. Chiang, A. J. Kresge, P. A. Obraztsov and J. B. Tobin, Croat. Chem. Acta, 1992, 65, 615 Search PubMed; Y. Chiang and A. J. Kresge, J. Am. Chem. Soc., 1985, 107, 6363 CrossRef CAS; M. Lajunen, M. Virta and O. Kylläinen, Acta Chem. Scand., 1994, 48, 122 CAS.
  22. M. Ali and D. P. N. Satchell, J. Chem. Soc., Perkin Trans. 2, 1995, 167 RSC; 1993, 1825.
  23. R. A. Cox, I. Onyido and E. Buncel, J. Am. Chem. Soc., 1992, 114, 1358 CrossRef CAS.
  24. R. A. Cox, J. Phys. Org. Chem., 1991, 4, 233 CrossRef CAS.
  25. R. A. Cox, Can. J. Chem., 1996, 74, 1774 CAS.
  26. R. A. Cox, Can. J. Chem., 1996, 74, 1779 CAS.
  27. R. A. Cox and K. Yates, Can. J. Chem., 1979, 57, 2944 CAS.
  28. R. A. Cox and K. Yates, J. Am. Chem. Soc., 1978, 100, 3861 CrossRef CAS.
  29. R. A. Cox and K. Yates, Can. J. Chem., 1981, 59, 2116 CAS.
  30. R. A. Cox, S.-O. Lam, R. A. McClelland and T. T. Tidwell, J. Chem. Soc., Perkin Trans. 2, 1979, 272 RSC.
  31. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York, 1969, p. 235; p. 172 Search PubMed.
  32. L. P. Hammett, Physical Organic Chemistry, 2nd edn., McGraw-Hill, New York, 1970, p. 356 Search PubMed.
  33. P. R. Wells, Linear Free Energy Relationships, Academic Press, London, 1968, p. 14 Search PubMed.
  34. E. C. W. Clarke and D. N. Glew, Trans. Faraday Soc., 1966, 62, 539 RSC.
  35. R. A. Cox and K. Yates, Can. J. Chem., 1984, 62, 2155 CAS.
  36. R. A. Cox, to be submitted for publication in J. Chem. Educ Search PubMed.
  37. W. F. Giauque, E. W. Hornung, J. E. Kunzler and T. R. Rubin, J. Am. Chem. Soc., 1960, 82, 62 CrossRef.
  38. G. A. Olah, A. T. Ku and J. A. Olah, J. Org. Chem., 1970, 35, 3925 CrossRef CAS.
  39. E. Y. Belyaev and L. I. Kotlyar, Reakts. Sposobn. Org. Soedin., 1973, 10, 269 Search PubMed; Chem. Abs., 1973, 79, 114782t Search PubMed; B. G. Gnedin, M. V. Chumakova and S. N. Ivanov, Zh. Org. Khim., 1983, 19, 575 Search PubMed; Russ. J. Org. Chem. (Engl. Transl.), 1983, 19, 507 CAS.
  40. P. K. Maarsen and H. Cerfontain, J. Chem. Soc., Perkin Trans. 2, 1977, 1003 RSC.
  41. R. J. Gillespie, T. E. Peel and E. A. Robinson, J. Am. Chem. Soc., 1971, 93, 5083 CrossRef CAS.
  42. R. Hoffmann, V. I. Minkin and B. K. Carpenter, Bull. Soc. Chim. Fr., 1996, 133, 117 CAS.
  43. R. V. Vizgert, Usp. Khim., 1963, 32, 3 Search PubMed; Russ. Chem. Rev. (Engl. Transl.), 1963, 32, 1 Search PubMed.
  44. L. Senatore, L. Sagramora and E. Ciuffarin, J. Chem. Soc., Perkin Trans. 2, 1974, 722 RSC; R. M. Forbes and H. Maskill, J. Chem. Soc., Chem. Commun., 1991, 854 RSC; S. Koo, T. W. Bentley, D. H. Kang and I. Lee, J. Chem. Soc., Perkin Trans. 2, 1991, 175 RSC.
  45. G. Cevasco and S. Thea, J. Org. Chem., 1996, 61, 6814 CrossRef CAS; P. Sanecki and E. Rokaszewski, Can. J. Chem., 1987, 65, 2263 CAS.
  46. E.g. K. Yates, Acc. Chem. Res., 1971, 4, 136 Search PubMed.
  47. R. A. Cox, Can. J. Chem., 1997, 75 CAS in the press.
  48. J. R. Keeffe and A. J. Kresge, Can. J. Chem., 1989, 67, 792 CAS; L. C. Gruen and P. T. McTigue, J. Chem. Soc., 1963, 5217 RSC; G. E. Lienhard and W. P. Jencks, J. Am. Chem. Soc., 1966, 88, 3982 CrossRef CAS; J. L. Kurtz, J. Am. Chem. Soc., 1967, 89, 3524 CrossRef CAS; T. J. Burkey and R. C. Fahey, J. Am. Chem. Soc., 1985, 107, 4772 CrossRef.
  49. T. G. Bonner and J. C. Lockhart, J. Chem. Soc., 1958, 3852 RSC.
  50. R. A. Cox, J. Am. Chem. Soc., 1974, 96, 1059 CrossRef CAS.
  51. R. A. Cox, L. M. Druet, A. E. Klausner, T. A. Modro, P. Wan and K. Yates, Can. J. Chem., 1981, 59, 1568 CAS.