Structural and electrochemical properties of a novel N,N′-dialkyl-substituted quinone diimine

(Note: The full text of this document is currently only available in the PDF Version )

Oliver Temme, Sabine Laschat, Roland Fröhlich, Birgit Wibbeling, Jürgen Heinze and Petra Hauser


Abstract

trans,trans-3,3,7,7,10,10,14,14-Octamethyl-1,2,3,4,4a,7,7a,8,9,10,11,11a,14,14a-tetradecahydroquino[2,3-b]acridine 5, formed by a Lewis acid-catalyzed biscyclization of N-arylbisimine 3 and subsequent autoxidation, represents the first stable example of the unexplored class of N,N′-dialkyl-substituted quinone diimines. The X-ray crystal structure of 5 exhibits the following features: space group P21/c; a ribbon-like arrangement of two parallel strands along the b-axis. The smallest intermolecular distance between two quinoid systems is 4.846 Å and therefore any close aromatic contacts in this material can be precluded. A chemically reversible single electron reduction at E0 = –1.87 V has been observed by cyclic voltammetry.


References

  1. M. R. Bryce, Chem. Soc. Rev., 1991, 20, 355 RSC.
  2. M. C. Grossel and S. C. Weston, Contemp. Org. Synth., 1994, 1, 367 RSC; S. Hünig, Pure Appl. Chem., 1990, 62, 395.
  3. P. Grünanger, in Houben-Weyl Methoden der Organischen Chemie, Thieme Verlag, Stuttgart, 4th edn., 1979, vol. VII/3b, p. 233 Search PubMed.
  4. P. Erk, S. Hünig, G. Klebe, M. Krebs and J. U. von Schütz, Chem. Ber., 1991, 124, 2005 CAS; S. Hünig, P. Erk, H. Meixner, T. Metzenthin, U. Langohr, J. U. von Schütz, H. P. Werner, H. C. Wolf, R. Burkert, H. W. Helber and G. Schaumburg, Advan. Mater., 1991, 3, 311 Search PubMed; R. Kato, H. Kobayashi and A. Kobayashi, J. Am. Chem. Soc., 1989, 111, 5224 CrossRef CAS; S. Hünig and P. Erk, Advan. Mater., 1991, 3, 225 Search PubMed.
  5. For N,N″-diphenyl-substituted quinone diimines see: H. W. Boone, M. A. Bruck, R. B. Bates, A. B. Padias and H. K. Hall, Jr., J. Org. Chem., 1995, 60, 5279 Search PubMed.
  6. R. Willstätter and A. Pfannenstiel, Chem. Ber., 1905, 38, 2244 Search PubMed.
  7. J. F. Carson, J. Am. Chem. Soc., 1953, 53, 4300 CrossRef.
  8. O. Temme and S. Laschat, J. Chem. Soc., Perkin Trans. 1, 1995, 125 RSC.
  9. For mechanistic investigations of this cyclization see: F. Linkert, S. Laschat, S. Kotila and T. Fox, Tetrahedron, 1996, 52, 955 Search PubMed.
  10. J. L. Courtneidge and A. G. Davies, J. Chem. Soc., Chem. Commun., 1984, 136 RSC.
  11. H. Wang, L. D. Kispert and H. Sang, J. Org. Chem., 1988, 53, 5967 CrossRef CAS.
  12. Details of the X-ray crystal structure determination of 5: formula C28H42N2, M 406.64, crystal size 0.40 × 0.35 × 0.10 mm, a= 11.728(2), b= 14.466(2), c= 14.411(2)Å, β= 93.14(1)°, V= 2441.3(6)Å3, D= 1.106 g cm–3, m= 4.7 cm–1, Z= 4, monoclinic, space group P21/c(No. 14), Enraf-Nonius-CAD4 diffractometer, T=–50 °C, l= 1.541 78 Å, ω–2θ-scan, 5178 reflections collected, (±h,–k, +l), [sinθ/λ]max. 0.62 Å–1, 4972 independent and 3946 observed reflections [F 4σ(F)], 280 refined parameters R= 0.053, ωR2= 0.159, largest difference peak and hole 0.37 and –0.25 e Å–3, H atoms calculated; structure solved by direct methods (SHELXS-86);13 refinement (SHELXL-93). Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). For details of the deposition scheme, see ‘Instructions for Authors’, J. Chem. Soc., Perkin Trans. 2, 1997, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 188/94 Search PubMed.
  13. G. M. Sheldrick, in Crystallographic Computing 3, eds. G. Sheldrick, C. Krüger and R. Goddard, Clarendon, Oxford, 1985, p. 175 Search PubMed.
  14. A. Aumüller, P. Erk, S. Hünig, E. Hädicke, K. Peters and H. G. von Schnering, Chem. Ber., 1991, 124, 2001.
  15. E. Tillmanns, F. Schwabenländer, S. Güssregen, S. Hünig and T. Metzenthin, Acta Crystallogr., Sect. C, 1994, 50, 715 CrossRef.
  16. Details of the cyclic voltammetric experiment: the experimental set-up for the electrochemical investigations consisted of a typical three-electrode configuration. The working electrode was a Pt-disk (diam. 1 mm) sealed in soft glass, the counter electrode was a Pt-wire and the reference electrode an Ag-wire coated with AgCl. The voltammetric measurements were carried out with an AMEL 533 potentiostat and an EG&G/PAR scan generator Model 175. All experiments were performed under superdry conditions in an argon atmosphere. Tetrahydrofuran and tetrabutylammonium hexafluorophosphate were used as solvent/supporting electrolyte.
  17. The purity of the quinone diimine 5 could be easily checked by CV. As soon as 5 contains traces of the corresponding hexadecahydroquino[2,3-b]acridine 4, an additional smaller redox wave was observed at –0.14 V. The CV curve, which is shown in Fig. 5, contains no further signals beyond –0.8 V.
  18. See for example: P. de la Cruz, N. Martin, F. Miguel, C. Seoane, A. Albert, F. H. Cano, A. Gonzalez and J. M. Pingarron, J. Org. Chem., 1992, 57, 6192 Search PubMed; N. Martin, J. A. Navarro, C. Seoane, A. Albert, F. H. Cano, J. Y. Becker, V. Khodorkovsky, E. Harlev and M. Hanack, J. Org. Chem., 1992, 57, 5726 CrossRef; A. Aumüller and S. Hünig, Liebigs Ann. Chem., 1986, 165 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.