Kinetics and mechanism of the addition of water and ring-opening of 2-methyl- and 2-aryl-4H-3,1-benzoxazines to 2-aminobenzyl esters in the acidic pH range; change in rate-limiting step with buffer concentration and evidence for a tetrahedral carbonyl addition intermediate

(Note: The full text of this document is currently only available in the PDF Version )

Wendy J. Dixon, Frank Hibbert and Judith F. Mills


Abstract

The observed rate coefficients for the reaction of 2-methyl-, 2-phenyl- and 2-(4-nitrophenyl)-4H-3,1-benzoxazines to give the corresponding 2-aminobenzyl esters increase as the pH is lowered and reach a constant plateau value at pH 2–4 depending on the substituent. The plateau region corresponds to complete conversion of the benzoxazine to the protonated benzoxazine (SH+) which is the reactive species. Values of pKSH+ calculated by fitting the appropriate rate expression to the rate–pH profile and the pKSH+ values measured spectrophotometrically before significant reaction to the ester has taken place are in good agreement. For each benzoxazine the observed rate coefficients show a rectilinear dependence on buffer concentration. A mechanism is proposed involving addition of water to the protonated benzoxazine to give a cyclic tetrahedral carbonyl addition intermediate. At low buffer concentrations, buffer catalysed collapse of the intermediate to product is rate-limiting and the reaction is first order in buffer. At high buffer concentrations, collapse of the intermediate to product is rapid and addition of water to the protonated benzoxazine to give the intermediate is rate-limiting.


References

  1. A. S. Baynham, F. Hibbert and M. A. Malana, J. Chem. Soc., Chem. Commun., 1992, 1110 RSC; A. S. Baynham, F. Hibbert and M. A. Malana, J. Chem. Soc., Perkin Trans. 2, 1993, 1711 RSC.
  2. W. J. Dixon and F. Hibbert, J. Chem. Soc., Perkin Trans. 2, 1994, 795 RSC; A. S. Baynham, W. J. Dixon, F. Hibbert and J. R. Patel, J. Chem. Soc., Perkin Trans. 2, 1996, 1105 RSC.
  3. B. Capon, M. I. Dosunmu and M. de N. de M. Sanchez, Adv. Phys. Org. Chem., 1985, 21, 37 CAS.
  4. M. I. Butt, D. G. Douglas and K. M. Watson, J. Chem. Soc., Perkin Trans. 1, 1977, 2329 Search PubMed.
  5. P. F. Jackson, K. J. Morgan and A. M. Turner, J. Chem. Soc., Perkin Trans. 2, 1972, 1582 RSC.
  6. B. Witkop, J. B. Patrick and H. M. Kissman, Chem. Ber., 1952, 85, 949 CAS.
  7. L. C. Raiford and E. P. Clark, J. Am. Chem. Soc., 1926, 48, 483 CrossRef CAS.
  8. R. D. Bowen, D. E. Davies, C. W. G. Fishwick, T. O. Glasbey, S. J. Noyce and R. C. Storr, Tetrahedron Lett., 1982, 23, 4501 CrossRef CAS.
  9. R. Grice and L. N. Owen, J. Chem. Soc., 1963, 1947 RSC.
  10. H. D. Soderbaum and O. Widman, Ber., 1889, 22, 1665 Search PubMed.
  11. W. J. Dixon and F. Hibbert, unpublished work.
  12. R. H. DeWolfe, J. Org. Chem., 1971, 36, 162 CrossRef CAS; in The Chemistry of Amidines and Imidates, 1975, ed. S. Patai, Wiley, New York Search PubMed.
  13. A. C. Satterthwait and W. P. Jencks, J. Am. Chem. Soc., 1974, 96, 7031 CrossRef CAS.
  14. E. P. Serjeant and B. Dempsey, Ionisation Constants of Organic Acids in Aqueous Solution, 1979, Pergamon Press, Oxford Search PubMed.
  15. The value of pKBH at ionic strength I= 0.25 mol dm–3 was obtained from the value at infinite dilution (pKo) using the expression pKBH= pKo– 2 × 0.51 ×(I)½/(1 +I½).
Click here to see how this site uses Cookies. View our privacy policy here.