Enantioselectivity improvement induced by β-cyclodextrin in the NaBH4 reduction of acetophenone through the formation of a three-component inclusion β-cyclodextrin–acetophenone–triethylamine complex

(Note: The full text of this document is currently only available in the PDF Version )

André Deratani, Estelle Renard, Florence Djedaïni-Pilard and Bruno Perly


Abstract

Stoichiometric amounts of triethylamine (TEA) were found to enhance the chiral induction by β-cyclodextrin (β-CD) in the reduction of acetophenone (ACPH) by aqueous NaBH4 and to invert the face selectivity. The enantioselectivity obtained depends upon the molar ratio β-CD∶ACPH∶TEA and on the reaction temperature. For example, R(+)-1-phenylethanol was predominantly produced at -10 °C in 56% enantiometric excess for a molar ratio β-CD∶ACPH∶TEA of 2∶1∶2 vs. the S(-) enantiomer in 5% enantiomeric excess in the absence of TEA, other experimental conditions remaining unchanged. Evidence for the formation of a three-component inclusion compound was obtained from detailed 1H and 2H NMR studies. TEA partially binds to the β-CD∶ACPH molecular edifice in such a way that the conformational mobility of the acetyl group is reduced. The restriction of the rotational motion of the prochiral centre probably accounts for the strong enhancement of the chiral induction observed.


References

  1. J. Szejtli, in Cyclodextrin Technology, Kluwer Academic Publishers, Dordrecht, 1988 Search PubMed.
  2. M. Komiyama, Prog. Polym. Sci., 1993, 18, 871 CrossRef CAS.
  3. K. Takahashi and K. Hattori, J. Incl. Phenom., 1994, 17, 1 CrossRef CAS.
  4. R. Breslow and P. Campbell, J. Am. Chem. Soc., 1969, 91, 3085 CrossRef CAS.
  5. R. Van Etten, J. F. Sebastian, G. A. Clowes and M. L. Bender, J. Am. Chem. Soc., 1967, 89, 3242 CrossRef CAS.
  6. M. S. Syamala, B. Nageswer Rao and V. Ramamurthy, Tetrahedron Lett., 1988, 44, 7234 CrossRef CAS.
  7. T. Tanaka, H. Sakuraba and H. Nakanishi, J. Chem. Soc., Chem. Commun., 1983, 947 RSC.
  8. H. Sakuraba and S. Ushiki, Tetrahedron Lett., 1990, 31, 5349 CrossRef CAS.
  9. H. Sakuraba, N. Inomata and Y. Tanaka, J. Org. Chem., 1989, 54, 3482 CrossRef CAS.
  10. Y. Kawagiri and N. Motohashi, J. Chem. Soc., Chem. Commun., 1989, 1336 RSC.
  11. T. Maraldo and A. Deratani, Minutes of the 5th International Symposium on Cyclodextrins, ed. D. Duchêne, Editions de SantéParis, 1990, p. 659 Search PubMed.
  12. A. Deratani, T. Maraldo and E. Renard, J. Incl. Phenom., 1995, 23, 137 CrossRef CAS.
  13. O. S. Tee and M. Bozzi, J. Am. Chem. Soc., 1990, 112, 7815 CrossRef CAS; O. S. Tee, M. Bozzi, J. J. Hoeven and T. A. Gadosy, J. Am. Chem. Soc., 1993, 115, 8990 CrossRef CAS.
  14. S. Hamai, J. Phys. Chem., 1989, 93, 2074 CrossRef CAS; S. Hamai, Bull. Chem. Soc. Jpn., 1991, 64, 431 CAS.
  15. A. Munoz de la Pena, T. T. Ndou, J. B. Zung, K. L. Greene, D. H. Live and I. M. Warner, J. Am. Chem. Soc., 1991, 113, 1572 CrossRef; A. Y. Will, A. Munoz de la Pena, T. T. Ndou and I. M. Warner, Appl. Spectroscopy, 1993, 47, 277 Search PubMed.
  16. R. Fornasier, F. Reniero, P. Scrimin and U. Tonelatto, J. Org. Chem., 1985, 50, 3209 CrossRef CAS.
  17. B. Klingert and G. Rims, J. Chem. Soc., Dalton Trans., 1991, 2749 RSC.
  18. F. Djedaïni and B. Perly, Magn. Reson. Chem., 1990, 28, 372 CAS.
  19. N. Azaroual-Bellanger and B. Perly, Magn. Reson. Chem., 1994, 32, 8 CAS.
  20. A. Bax and D. G. Davis, J. Magn. Reson., 1985, 65, 355 CAS.
  21. F. Djedaïni and B. Perly, in New trends in cyclodextrins and derivatives, ed. D. Duchêne, Editions de Santé, Paris, 1991, ch. 6, pp. 217–246 Search PubMed.
  22. A. Deratani and E. Renard, Chirality, 1994, 6, 658 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.