The relative stabilities of dihydropterins; a comment on the structure of Moco, the cofactor of the oxomolybdoenzymes

(Note: The full text of this document is currently only available in the PDF Version )

Stephen P. Greatbanks, Ian H. Hillier, C. David Garner and John A. Joule


Abstract

Ab initio calculations have been performed on 7,8-dihydro-2-aminopteridin-4(3H)-one and on 39 dihydropteridine tautomers of it leading to an assessment of their relative energies and thence the likelihood of their involvement in the operation of the cofactor of the oxomolybdoenzymes, Moco. The effect of a polar environment on the tautomer energetics has been explored using a continuum model. At the most advanced level of calculation, and in the presence of water, the 7,8-dihydro-3H-(T1) and 5,6-dihydro-3H- (T4) tautomers are essentially isoenergetic, with 7,8-dihydro-6H- (T13) and 5,8-dihydro-3H- (T3) tautomers only 8.0 and 15.5 kJ mol-1 more energetic than T1. Any of these four tautomers can reasonably be implicated in the mode of action of Moco. The ortho quinonoid tautomer (T2) is of considerably higher energy and seems much less likely to be implicated.


References

  1. For a review The structure and mode of action of the cofactor of the oxomolybdoenzymes see D. Collison, C. D. Garner and J. A. Joule, Chem. Soc. Rev., 1996, 25 Search PubMed.
  2. Pterin = 2-aminopteridin-4(3H)-one; for reviews of pterin chemistry see Fused pyrimidines. Part three; Pteridines, ed. D. J. Brown, The Chemistry of Heterocyclic Compounds, ed. E. C. Taylor, Wiley Interscience, New York, 1988, vol. 24, Part 3 Search PubMed; W. Pfleiderer, J. Heterocycl. Chem., 1992, 29, 583 Search PubMed.
  3. For an exception in which a 5,6,7,8 tetrahydropterin dervative was obtained see S. P. Kramer, J. L. Johnson, A. A. Ribeiro, D. S. Millington and K. V. Rajagopalan, J. Biol. Chem., 1987, 262, 16 357 Search PubMed.
  4. Other molybdenum ligands are omitted for clarity.
  5. K. V. Rajagopalan, S. Kramer and S. Gardlik, Polyhedron, 1986, 5, 573 CrossRef CAS.
  6. S. Gardlik and K. V. Rajagopalan, J. Biol. Chem., 1990, 265, 13 047 CAS.
  7. S. J. N. Burgmayer, M. R. Arkin, L. Bostick, S. Dempster, K. M. Everett, H. L. Layton, K. E. Paul, C. Rogge and A. L. Rheingold, J. Am. Chem. Soc., 1995, 117, 5812 CrossRef CAS.
  8. E. M. Armstrong, M. S. Austerberry, J. H. Birks, R. L. Beddoes, M. Helliwell, J. A. Joule and C. D. Garner, Heterocycles, 1993, 35, 563.
  9. M. J. Romão, M. Archer, I. Moura, J. J. G. Moura, J. LeGall, E. Engh, M. Schneider, P. Hof and R. Huber, Science, 1995, 270, 1170 CAS.
  10. H. Schindelin, C. Kisker, J. Hilton, K. V. Rajagopalan and D. C. Rees, Science, 1996, 272, 1615 CrossRef CAS.
  11. M. K. Chan, S. Mukund, A. Kletzin, M. W. W. Adams and D. C. Rees, Science, 1995, 267, 1463 CAS.
  12. For a review see D. W. Young, Chem. Soc. Rev., 1994, 23, 119 Search PubMed.
  13. For a review see T. A. Dix and S. J. Benkovic, Acc. Chem. Res., 1988, 21, 101 Search PubMed.
  14. S. W. Bailey, R. Y. Chandrasekaran and J. E. Ayling, J. Org. Chem., 1992, 57, 4470 CrossRef CAS see also S. W. Bailey, I. Renbrin, S. R. Boerth and J. E. Ayling, J. Am. Chem. Soc., 1995, 117, 10 203 Search PubMed.
  15. S. J. N. Burgmayer, A. Baruch, K. Kerr and K. Yoon, J. Am. Chem. Soc., 1989, 111, 4982 CrossRef CAS.
  16. W. Pfleiderer and H. Zondler, Chem. Ber., 1966, 99, 3008 CAS; R. Prewo, J. H. Bieri, S. N. Ganguly and M. Viscontini, Helv. Chem. Acta, 1982, 65, 1094 CrossRef CAS; P. A. Charlton and D. W. Young, J. Chem. Soc., Perkin Trans. 1, 1982, 1363 RSC.
  17. B. Schirks, J. H. Bieri and M. Viscontini, Helv. Chim. Acta, 1978, 61, 2731 CrossRef.
  18. J. H. Bieri and M. Viscontini, Helv. Chim. Acta, 1974, 57, 1651 CrossRef CAS; W. Pfleiderer, Chem. Ber., 1979, 112, 2750 CAS.
  19. M. Viscontini and S. Huwyler, Helv. Chim. Acta, 1965, 48, 764 CrossRef CAS.
  20. M. C. Archer and K. G. Scrimgeour, Can. J. Biochem., 1970, 48, 278 CAS; M. C. Archer, D. J. Vonderschmitt and K. G. Scrimgeour, Can. J. Biochem., 1972, 50, 1174 CAS; S. Kaufman, J. Biol. Chem., 1964, 239, 332 CAS.
  21. S. W. Bailey and J. E. Ayling, Biochemistry, 1983, 22, 1790 CrossRef CAS.
  22. S. Matsuura, T. Sugimoto and S. Murata, Tetrahedron Lett., 1985, 26, 4003 CrossRef CAS.
  23. I. R. Gould, N. A. Burton, R. J. Hall and I. H. Hillier, J. Mol. Struct. (THEOCHEM), 1995, 331, 147 CrossRef CAS.
  24. M. W. Wong, K. B. Wiberg and M. J. Frisch, J. Am. Chem. Soc., 1992, 114, 1645 CrossRef.
  25. P. E. Young, D. V. S. Green, I. H. Hillier and N. A. Burton, Mol. Phys., 1993, 80, 503 CAS.
  26. J. E. Gready, J. Comput. Chem., 1985, 6, 377 CrossRef CAS; J. Mol. Struct. (THEOCHEM), 1985, 25, 1 Search PubMed; J. Am. Chem. Soc., 1985, 107, 6689 Search PubMed.
  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, GAUSSIAN94, Revision A.1, Gaussian, Inc., Pittsburgh, PA, 1995 Search PubMed.
  28. R. J. Hall, N. A. Burton, I. H. Hillier and P. E. Young, Chem. Phys. Lett., 1994, 220, 129 CrossRef CAS.
  29. O. G. Parchment, I. H. Hillier and D. V. S. Green, J. Chem. Soc., Perkin Trans. 2, 1991, 799 RSC.
  30. O. G. Parchment, D. V. S. Green, P. J. Taylor and I. H. Hillier, J. Am. Chem. Soc., 1993, 115, 2352 CrossRef CAS.
  31. Exploring Chemistry with Electronic Structure Methods: A Guide to using Gaussian, J. B. Foresman and A. Frisch, Gaussian Inc., Pittsburgh, PA15213, USA Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.