General acid catalysis of the reversible addition of thiolate anions to cyanamide

(Note: The full text of this document is currently only available in the PDF Version )

Kevin N. Dalby and William P. Jencks


Abstract

The addition of aromatic thiols (pKa = 2.6–6.5) to cyanamide to give the isothiourea is subject to general-acid catalysis of the addition of thiolate anions by tertiary ammonium ions, with α = 0.26 and 0.31 (±0.07) for the addition of thiophenol and 4-nitrothiophenol, respectively. The Brønsted coefficients and a small solvent isotope effect of kH2O/kD2O = 1.6 for catalysis by 4-morpholinoethanesulfonic acid (MES) buffer and for the uncatalysed addition of thiophenol are consistent with significant movement of a hydron in the transition state. The conclusion that the reaction proceeds through a basic asymmetric intermediate in the absence of catalysis is supported by the similar rate constants for the addition of thiophenolate anion to cyanamide and to N,N-dimethylcyanamide, which cannot tautomerize to the carbodiimide. The reaction has a central transition state in which S–C bond formation takes place with βnuc = 0.55. It is concluded that the mechanism of catalysis involves partial transfer of a hydron to the cyano nitrogen atom in the transition state.


References

  1. R. F. Pratt and T. C. Bruice, J. Am. Chem. Soc., 1972, 94, 2823 CrossRef CAS.
  2. W. P. Jencks, Acc. Chem. Res., 1976, 9, 425 CrossRef CAS.
  3. H. S. Harned and W. J. Hamer, J. Am. Chem. Soc., 1933, 55, 2194 CrossRef CAS.
  4. A. J. Kirby and R. E. Marriott, J. Am. Chem. Soc., 1995, 117, 833 CrossRef CAS.
  5. H. G. Khorana, Chem. Rev., 1953, 53, 145 CrossRef.
  6. F. Kurzer and K. Douraghi-Zadeh, Chem. Rev., 1967, 67, 107 CrossRef CAS.
  7. Y. Wolman, in The Chemistry of Ketenes, Allenes and Related Compounds, ed. S. Patai, Wiley-Interscience, London, 1980, ch. 18 Search PubMed.
  8. A. Williams, S. V. Hill and I. T. Ibrahim, Anal. Biochem., 1981, 114, 173 CrossRef CAS.
  9. T. Ibrahim and A. Williams, J. Chem. Soc., Perkin Trans. 2, 1982, 1459 RSC.
  10. H. F. Gilbert and W. P. Jencks, J. Am. Chem. Soc., 1977, 99, 7931 CrossRef CAS.
  11. D. A. Jencks and W. P. Jencks, J. Am. Chem. Soc., 1977, 99, 7948 CrossRef CAS.
  12. W. P. Jencks, Chem. Rev., 1985, 85, 511 CrossRef CAS.
  13. V. Gold and S. J. Grist, J. Chem. Soc. B, 1971, 2282 RSC.
  14. R. L. Schowen, in Progress in Physical Organic Chemistry, eds. A. Streitweiser, Jr. and R. W. Taft, 1972, 9, 275 Search PubMed.
  15. D. A. Winey and E. R. Thornton, J. Am. Chem. Soc., 1975, 97, 3102 CrossRef CAS.
  16. P. Dietze and W. P. Jencks, J. Am. Chem. Soc., 1989, 111, 340 CrossRef CAS.
  17. F. Westheimer, Chem. Rev., 1961, 61, 265 CrossRef CAS.
  18. W. H. Saunders, J. Am. Chem. Soc., 1983, 105, 4767 CrossRef CAS.
  19. W. P. Jencks and J. Regenstein, in Handbook of Biochemistry and Molecular Biology, ed. H. A. Sober, CRC Press, Cleveland, 2nd edn., 1970, pp. J150–189 Search PubMed.
  20. H. F. Gilbert and W. P. Jencks, J. Am. Chem. Soc., 1979, 101, 5774 CrossRef CAS.
  21. F. Arndt, Justus Liebigs Ann. Chem., 1911, 384, 322.
  22. W. P. Jencks and K. Salvesen, J. Am. Chem. Soc., 1971, 93, 4433 CrossRef CAS.
  23. P. K. Glasoe and F. A. Long, J. Phys. Chem., 1960, 64, 188 CrossRef CAS.
  24. G. L. Ellman, Arch. Biochem. Biophys., 1959, 82, 70 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.