Different mechanisms for the reaction of disubstituted aromatic esters and thioic S-esters with electrochemically generated superoxide

(Note: The full text of this document is currently only available in the PDF Version )

Richard D. Webster and Alan M. Bond


Abstract

Dialkyl pyridine and benzene dicarboxylates and dicarbothioates (dithioic S,S′-diesters) react with electrochemically generated superoxide to form the monocarboxylate anions in almost 100% yield (step 1) before being converted to the dicarboxylate dianions (step 2). This result indicates that the rate of reaction with superoxide to form the anion (rate constant k1) is considerably faster than the rate to form the dianion (rate constant k2) (k1 [double greater-than, compressed] k2). However, the number of moles/equivalent of superoxide needed to bring about the conversion of the diesters to the carboxylate anions is 2.0 ± 0.1 for each step, while for the dithioic S-esters only 1.7 ± 0.2 moles/equivalent are needed for each step. The reason for this difference between the diesters and dithioic S-esters is most likely due, in the case of the dithioic S,S′-diesters, to homolytic rather than heterolytic bond cleavage occurring, where the C(O)–S bond is cleaved to form the thiyl radical (˙SPr), which either dimerises to form PrSSPr or further reacts with O2˙- to form -SPr. Previously postulated mechanisms do not account for the difference between esters and thioic S-esters. From a synthetic perspective, this work provides a useful route for the preparation of mixed carboxylates–thioic S-esters from dithioic S-esters.


References

  1. D. L. Maricle and W. G. Hodgson, Anal. Chem., 1965, 37, 1562 CrossRef CAS.
  2. E. L. Johnson, K. H. Pool and R. E. Hamm, Anal. Chem., 1966, 38, 183 CrossRef CAS.
  3. D. Vasudevan and H. Wendt, J. Electroanal. Chem., 1995, 392, 69 CrossRef CAS.
  4. F. Magno and G. Bontempelli, J. Electroanal. Chem., 1976, 68, 337 CrossRef CAS.
  5. J. San Filippo, Jr., L. J. Romano, C.-I. Chern and J. S. Valentine, J. Org. Chem., 1976, 41, 586 CrossRef.
  6. M. J. Gibian, D. T. Sawyer, T. Ungermann, R. Tangpoonpholvivat and M. M. Morrison, J. Am. Chem. Soc., 1979, 101, 640 CrossRef CAS.
  7. D. T. Sawyer and J. S. Valentine, Acc. Chem. Res., 1981, 14, 393 CrossRef CAS.
  8. A. I. Vogel, A Text-Book of Practical Organic Chemistry, 3rd edn., Longmans, New York, 1956 Search PubMed.
  9. M. M. Bates, T. J. Cardwell, R. W. Cattrall, L. W. Deady and C. G. Gregorio, Talanta, 1995, 42, 999 CrossRef CAS.
  10. A. J. Fry and W. E. Britton, in Laboratory Techniques in Electroanalytical Chemistry, ed. P. T. Kissinger and W. R. Heineman, Marcel Dekker, New York, 1984, ch. 13 Search PubMed.
  11. R. D. Webster, A. M. Bond and T. Schmidt, J. Chem. Soc., Perkin Trans. 2, 1995, 1365 RSC.
  12. R. D. Webster, A. M. Bond and R. G. Compton, J. Phys. Chem., 1996, 100, 10288 CrossRef CAS.
  13. T. Awata, M. M. Baizer, T. Nonaka and T. Fuchigami, Chem. Lett., 1985, 371 CAS.
  14. R. D. Webster and A. M. Bond, J. Org. Chem., 1997, 62, 1779 CrossRef CAS.
  15. K. Boujlel and J. Simonet, Tetrahedron Lett., 1979, 1063 CrossRef CAS.
  16. F. Magno, G. Bontempelli and G. Pilloni, J. Electroanal. Chem., 1971, 30, 375 CrossRef CAS.
  17. J. K. Howie, J. J. Houts and D. T. Sawyer, J. Am. Chem. Soc., 1977, 99, 6323 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.