Studies on hydrolysis of chiral, achiral and racemic alcohol esters with Pseudomonas cepacia lipase: mechanism of stereospecificity of the enzyme

(Note: The full text of this document is currently only available in the PDF Version )

Kanji Nishizawa, Yasutaka Ohgami, Noritada Matsuo, Hiroshi Kisida and Hideo Hirohara


Abstract

Steady-state kinetics of Pseudomonas cepacia lipase-catalysed hydrolysis of five analogous chiral and achiral substrates, i.e. (R)- and (S)-1-methyl-2-(4-phenoxyphenoxy)ethyl acetates (R)- and (S)-1a, (R)- and (S)-2-methyl-2-(4-phenoxyphenoxy)ethyl acetates (R)- and (S)-1b and 2-(4-phenoxyphenoxy)ethyl acetate 1c, were investigated in sufficiently emulsified reaction mixtures of water-insoluble substrates. The apparent Michaelis constant Km values were identical for all the esters, and no nonproductive binding was observed in these substrates. The apparent catalytic constants kcat were found to reflect the leaving abilities of the alcoholate ions for the fast-reacting enantiomers. These observations, based on the findings that acyl-enzyme intermediate formation was rate-determining in the overall reaction, strongly suggested that all the substrates are bound to the enzyme in the same manner whether or not the alcohol moiety has a medium-sized substituent LM at the stereocentre and that the breakdown of a tetrahedral intermediate is rate-determining in the acylation of the enzyme. Time courses were also studied for the hydrolysis of racemic 1-ethyl-2-(4-phenoxyphenoxy)ethyl acetate 1d together with 1a, 1b and 1c. The enzyme distinguished (R)-1d from its antipode perfectly and hydrolysed only the (R)-enantiomer. These results were interpreted to indicate that LM of the slow-reacting enantiomer is positioned close to the imidazole ring of the catalytic His and hinders Nε2 of the residue from forming a weak interaction with O1 of the leaving alcohol and that the breakdown of the tetrahedral intermediate is thus inhibited.


References

  1. E. Santaniello, P. Ferraboschi and P. Grisenti, Enzyme Microb. Technol., 1993, 15, 367 CrossRef CAS; E. Santaniello, P. Ferraboschi, P. Grisenti and A. Manzocchi, Chem. Rev., 1992, 92, 1071 CrossRef CAS; A. M. Klibanov, Acc. Chem. Res., 1990, 23, 114 CrossRef CAS.
  2. R. J. Kazlauskas, A. N. E. Weissfloch, A. T. Rappaport and L. A. J. Cuccia, J. Org. Chem., 1991, 56, 2656 CrossRef CAS.
  3. C. Exl, H. Hönig, G. Renner, R. Rogi-Kohlenprath, V. Seebauer and P. Seufer-Wasserthal, Tetrahedron: Asymmetry, 1992, 3, 1391 CrossRef CAS.
  4. (a) M.-J. Kim and Y. K. Choi, J. Org. Chem., 1992, 57, 1605 CrossRef CAS; (b) K. Burgess and L. D. Jennings, J. Am. Chem. Soc., 1991, 113, 6129 CrossRef CAS.
  5. M. Gruber-Khadjawi and H. Honig, Biocatalysis, 1994, 9, 249 Search PubMed.
  6. K. Nishizawa, Y. Ogami, N. Matsuo, H. Kisida and H. Hirohara, Enzyme Microb. Technol., 1997, 20 CrossRef CAS in the press.
  7. (a) K. Naemnura, R. Fukuda, M. Konishi, K. Horose and Y. Tobe, J. Chem. Soc., Perkin Trans. 1, 1994, 1253 RSC; (b) H. Akita, M. Nozawa, I. Umezawa and S. Nagumo, Biocatalysis, 1994, 9, 79 Search PubMed.
  8. E. J. Toone, M. J. Werth and J. B. Jones, J. Am. Chem. Soc., 1990, 112, 4946 CrossRef CAS.
  9. (a) T. Umemura and H. Hirohara, in Biocatalysis in Agricultural Biotechnology, ed. J. R. Whitaker and P. E. Sonnet, ACS Washington DC, 1989, 371 Search PubMed; (b) H. Hirohara, in Application of Biotechnology to Fine-chemicals, ed. T. Oishi and H. Akita, IPC, Tokyo, 1989, 183 Search PubMed; (c) Z.-F. Xie, H. Suemune and K. Sakai, Tetrahedron: Asymmetry, 1990, 1, 395 CrossRef CAS; K. Naemura, H. Ida and R. Fukuda, Bull. Chem. Soc. Jpn., 1993, 66, 573 CAS.
  10. C. Chapus, M. Sémériva, C. Bovier-Lapierre and P. Desnuelle, Biochemistry, 1976, 15, 4980 CrossRef CAS; C. Chapus and M. Sémériva, Biochemistry, 1976, 15, 4988 CrossRef CAS.
  11. L. Brady, A. M. Brzozowski, Z. S. Derewenda, E. Dorson, T. Shirley, J. P. Turkenburg, L. Christiansen, B. Huge-Jensen, L. Norskov, L. Thim and U. Menge, Nature, 1990, 343, 767 CrossRef CAS; F. K. Winkler, A. D'Arcy and W. Hunziker, Nature, 1990, 343, 771 CrossRef CAS; J. D. Schrag, Y. Li, S. Wu and M. Cygler, Nature, 1991, 351, 761 CrossRef CAS.
  12. (a) P. Grochulski, F. Bouthillier, R. J. Kazlauskas, A. N. Serreqi, J. D. Schrag, E. Ziomek and M. Cygler, Biochemistry, 1994, 33, 3494 CrossRef CAS; (b) M. Crygler, P. Grochulski, R. J. Kazlauskas, J. D. Schrag, F. Bouthillier, B. Rubin, A. N. Serreqi and A. K. Gupta, J. Am. Chem. Soc., 1994, 116, 3180 CrossRef CAS.
  13. (a) H. Hirohara, M. L. Bender and R. S. Stark, Proc. Natl. Acad. Sci. USA, 1974, 71, 1643 CAS; (b) D. M. Blow and J. M. Smith, Phil. Trans. R. Soc. London, B, 1975, 272, 87 Search PubMed; D. M. Blow, Acc. Chem. Res., 1976, 9, 145 CrossRef CAS; (c) M. W. Hunkapiller, M. D. Forgac and J. H. Richards, Biochemistry, 1976, 15, 5581 CrossRef CAS.
  14. G. Benzonana and P. Desnuelle, Biochim. Biophys. Acta, 1965, 105, 121 CAS.
  15. A. Sugihara, M. Iwai and Y. Tsujisaka, J. Biochem., 1982, 91, 507 CAS.
  16. S. Mitsuda, S. Nabeshima and H. Hirohara, Appl. Microbiol. Biotechnol., 1989, 31, 334 CAS.
  17. H. Matsumae and T. Shibatani, J. Ferment. Bioeng., 1994, 77, 152 Search PubMed.
  18. (a) H. Hirohara, M. Philipp and M. L. Bender, Biochemistry, 1977, 16, 1573 CrossRef CAS; (b) M. L. Bender and F. J. Kézdy, Ann. Rev. Biochem., 1965, 34, 49 Search PubMed.
  19. C.-S. Chen, K. Fujimoto, K. Girdaukas and C. J. Sih, J. Am. Chem. Soc., 1982, 104, 7294 CrossRef CAS.
  20. T. C. Bruice, T. H. Fife, J. J. Bruno and N. E. Brandon, Biochemistry, 1962, 1, 7 CrossRef CAS.
  21. H. Pine, J. B. Hendrickson, D. J. Cram and G. S. Hammond, Organic Chemistry, 4th edn., McGraw-Hill, New York, 1980, ch. 8 Search PubMed.
  22. S. Kunugi, H. Hirohara, E. Nishimura and N. Ise, Arch. Biochem. Biophys., 1978, 189, 298 CrossRef CAS; S. Kunugi, H. Hirohara and N. Ise, J. Am. Chem. Soc., 1979, 101, 3640 CrossRef CAS.
  23. M. E. M. Noble, A. Cleasby, L. N. Johnson, M. R. Egmond and L. G. J. Frenken, FEBS Lett., 1993, 331, 123 CrossRef CAS.
  24. K. Nakamura and Y. Hirose, J. Synth. Org. Chem. Jpn., 1995, 53, 668 Search PubMed.
  25. (a) H. Hirohara, S. Mitsuda, E. Ando and R. Komaki, in Biocatalysts in Organic Syntheses, ed. J. Tramper, H. C. van der Plus and P. Linko, Elsevier, Amsterdam, 1985, 119 Search PubMed; (b) S. Mitsuda, T. Umemura and H. Hirohara, Appl. Microbiol. Biotechnol., 1988, 29, 310 CrossRef CAS.
  26. M. Sugiura and T. Oikawa, Biochim. Biophys. Acta, 1977, 489, 262 CAS.
  27. M. Nishizawa, H. Gomi and F. Kishimoto, Biosci. Biotech. Biochem., 1993, 57, 594 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.