A buffer zone in the crystal structure that governs the solid-state photodimerization of bulky olefins with the 1,4-dihydropyridine skeleton

(Note: The full text of this document is currently only available in the PDF Version )

Nobuhiro Marubayashi, Takayuki Ogawa, Toshio Hamasaki and Noriaki Hirayama


Abstract

Due to steric hindrance, bulky olefins cannot readily undergo solid-state photodimerization. UV irradiation of crystals of (4RS,1′RS)-methyl 1-phenyl-2-piperidinoethyl 1,4-dihydro-2,6-dimethyl-4-(2-thienyl)pyridine-3,5-dicarboxylate (1), however, affords a single product (4RS,8SR)-4a,8a-dimethoxycarbonyl-2,4b,6,8b- tetramethyl-3-[(1RS)-1-phenyl-2-piperidinoethoxycarbonyl]-7-[ (1SR)-1-phenyl-2-piperidinoethoxycarbonyl]-4,8-di(2-thienyl)- 1,4,4a,4b,5,8,8a,8b-octahydro-trans-cyclobuta[1,2-b [hair space]: 3,4-b′]dipyridine (2), in quantitative yield. X-Ray analyses of 1 and 2 showed that 2 is a photodimer of 1 and proved that bulky olefins can undergo solid-state photodimerization. Although the molecular system and the molecular arrangement in the crystal of dimethyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate (3) are quite similar to those of 1, crystals of 3 cannot undergo solid-state photodimerization. Detailed inspection of the crystal structure of 1 revealed that there is a certain space between reacting molecules in the crystal to allow initiation of photodimerization. The space, designated as a buffer zone, buffers the steric hindrance from which the reacting molecules suffer when they approach each other. The buffer zone is formed by the disordered piperidine rings in 1, but there is no extra space in the crystal structure of 3. The present study has shown that the buffer zone in the crystal structure must be one of the prerequisite controlling factors for solid-state photodimerization.


References

  1. V. Ramamurthy and K. Venkatesan, Chem. Rev., 1987, 87, 433 CrossRef CAS .
  2. (a) M. D. Cohen and G. M. J. Schmidt, J. Chem. Soc., 1964, 1996 RSC ; (b) M. D. Cohen, G. M. J. Schmidt and F. I. Sonntag, J. Chem. Soc., 1964, 2000 RSC ; (c) G. M. J. Schmidt, Pure Appl. Chem., 1971, 27, 647 CAS .
  3. (a) S. Ariel, S. Askari, J. R. Scheffer, J. Trotter and L. Walsh, J. Am. Chem. Soc., 1984, 106, 5726 CrossRef CAS ; (b) D. Kanagapushpam, V. Ramamurthy and K. Venkatesan, Acta Crystallogr., Sect. C, 1987, 43, 1128 CrossRef .
  4. M. D. Cohen, Angew. Chem., Int. Ed. Engl., 1975, 14, 386 CrossRef .
  5. A. Gavezzotti, J. Am. Chem. Soc., 1983, 105, 5220 CrossRef CAS .
  6. K. Araki, H. Ao, J. Inui and K. Aihara, EP 88 903/ 1983(Chem. Abstr., 1984, 100, 85 591) Search PubMed .
  7. (a) L. J. Nunez-Vergara, C. Sunkel and J. A. Squella, J. Pharm. Sci., 1994, 83, 502 CAS ; (b) A. L. Zanocco, L. Diaz, M. Lopez, L. J. Nunez-Vergara and J. A. Squella, J. Pharm. Sci., 1992, 81, 920 CAS ; (c) Y. Matsuda, R. Teraoka and I. Sugimoto, Int. J. Pharm., 1989, 54, 211 CrossRef CAS .
  8. (a) A. M. Triggle, E. Shefter and D. J. Triggle, J. Med. Chem., 1980, 23, 1442 CrossRef CAS ; (b) R. Fossheim, K. Svarteng, A. Mostad, C. Romming, E. Shefter and D. J. Triggle, J. Med. Chem., 1982, 25, 126 CrossRef CAS ; (c) R. Fossheim, A. Joslyn, A. J. Solo, E. Luchowski, A. Rutledge and D. J. Triggle, J. Med. Chem., 1988, 31, 300 CrossRef CAS ; (d) D. A. Langs, P. D. Strong and D. J. Triggle, J. Comput.-Aided. Mol. Des., 1990, 4, 215 Search PubMed ; (e) A. Miyamae, S. Koda and Y. Morimoto, Chem. Pharm. Bull., 1986, 34, 3071 CAS ; (f) G. Rovnyak, N. Andersen, J. Gougoutas, A. Hedberg, S. D. Kimball, M. Malley, S. Moreland, M. Porubcan and A. Pudzianowski, J. Med. Chem., 1988, 31, 936 CrossRef CAS ; (g) A. Hempel and M. P. Gupta, Acta Crystallogr., Sect. B, 1978, 34, 3815 CrossRef .
  9. F. H. Allen, J. E. Davies, J. J. Galloy, O. Johnson, O. Kennard, C. F. Macrae, E. M. Mitchell, G. F. Mitchell, J. M. Smith and D. G. Watson, J. Chem. Inf. Comput. Sci., 1991, 31, 187 CrossRef CAS .
  10. P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J.-P. Declercq and M. M. Woolfson, MULTAN 11/82, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data, University of York, England, and Louvain, Belgium, 1982 Search PubMed .
  11. C. K. Fair, MOLEN, An Interactive Intelligent System for Crystal Structure Analysis, Enraf-Nonius, Delft, The Netherlands, 1990 Search PubMed .
Click here to see how this site uses Cookies. View our privacy policy here.