Reductive electron transfer on trichloromethyl derivatives of benzene and pyridine studied by electrochemical methods

(Note: The full text of this document is currently only available in the PDF Version )

Marco Borsari, Daniela Dallari, Claudio Fontanesi, Giovanna Gavioli, Dario Iarossi, Roberta Piva and Ferdinando Taddei


Abstract

The electrochemical reduction of α,α,α-trichlorotoluene (benzotrichloride) and of the corresponding isomeric pyridine derivatives has been investigated by cyclic voltammetry and microcoulometry. Three irreversible diffusion controlled reduction waves have been observed in the voltammetry of the trichloromethyl derivatives and are found to correspond to the progressive two-electron reduction of derivatives where a chlorine atom is substituted by a hydrogen atom. The peak potentials Ep show that reduction of the pyridine derivatives is easier than that of the benzene derivatives with the same number of chlorine atoms, the more positive shift occurring for the 4-substituted compounds. The experimental findings would indicate a concerted electron transfer-bond breaking (C–Cl) mechanism for all the compounds examined, as well as for the chloromethyl and dichloromethyl derivatives formed after Cl/H substitution. Electron uptake appears to be the rate-determining step of the reductive cleavage of these molecules. The effects of the different aromatic rings and of the degree of halogen substitution of the methyl group on the reduction potentials are discussed.


References

  1. (a) L. Eberson, Electron Transfer Reactions in Organic Chemistry, Springer-Verlag, Berlin, 1987 Search PubMed; (b) J.-M. Saveant, Adv. Phys. Org. Chem., 1990, 26, 1 CAS.
  2. N. Kornblum, Angew. Chem., Int. Ed. Engl., 1975, 14, 734 CrossRef; N. Kornblum, in The Chemistry of Functional Groups, ed. S. Patai, Wiley Interscience, New York, 1982, supplement F, p. 361 Search PubMed; G. A. Russell, Adv. Phys. Chem., 1987, 23, 271 Search PubMed; G. A. Russell, Acc. Chem. Res., 1981, 22, 1 Search PubMed; R. A. Rossi and R. H. Rossi, Aromatic Substitution by the SRN1 Mechanism, ACS Monographs 178, Washington, DC, 1983.
  3. C. P. Andrieux, A. Le Gorande and J.-M. Saveant, J. Am. Chem. Soc., 1992, 114, 6892 CrossRef CAS.
  4. J.-M. Saveant, J. Am. Chem. Soc., 1992, 114, 10 595 CrossRef CAS.
  5. W. E. Wentworth, R. George and H. Keith, J. Chem. Phys., 1969, 51, 1791 CrossRef CAS.
  6. E. Canadell, P. Karafiloglou and L. Salem, J. Am. Chem. Soc., 1980, 102, 855 CrossRef CAS; T. Clark, Faraday Discuss. Chem. Soc., 1984, 78, 203 RSC; R. Benassi, F. Bernardi, A. Bottoni, M. A. Robb and F. Taddei, Chem. Phys. Lett., 1989, 161, 79 CrossRef CAS; J. Bertran, I. Gallardo, M. Moreno and J.-M. Saveant, J. Am. Chem. Soc., 1992, 114, 9576 CrossRef CAS; T. Tada and R. Yoshimura, J. Am. Chem. Soc., 1992, 114, 1593 CrossRef CAS.
  7. R. N. Compton, P. W. Reinhart and C. C. Cooper, J. Chem. Phys., 1978, 68, 4360 CrossRef CAS; A. Hasegawa and S. Williams, Chem. Phys. Lett., 1977, 46, 66 CrossRef CAS; A. Hasegawa, M. Shiatani and S. Williams, Faraday Discuss. Chem. Soc., 1977, 157 Search PubMed; L. Bonazzola, J. P. Michaut and J. Roncin, Chem. Phys. Lett., 1988, 153, 52 CrossRef CAS; A. Kuhn and A. Illenberger, J. Phys. Chem., 1989, 93, 7060 CrossRef; A. Kuhn and E. Illenberger, J. Chem. Phys., 1990, 93, 357 CrossRef.
  8. R. Benassi, C. Bertarini and F. Taddei, Chem. Phys. Lett., 1996, 257, 633 CrossRef CAS.
  9. M. Ichihashi, J. Hirokawa, T. Tsukuda, T. Kondow, C. E. H. Dessent, C. G. Scarton and M. A. Johnson, J. Phys. Chem., 1995, 99, 1655 CrossRef CAS.
  10. R. Dressler, M. Allan and E. Haselbach, Chimia, 1985, 39, 385 CAS.
  11. Encyclopedia of electrochemistry of the elements, Organic Section, ed. A. J. Bard and H. Lund, Marcel Dekker Inc., New York and Basel, 1973, Vol. XIV. Search PubMed.
  12. F. Taddei, Gazz. Chim. Ital., 1996, 126, 529 CAS.
  13. A. Cornia, U. Folli, S. Sbardellati and F. Taddei, J. Chem. Soc., Perkin Trans. 2, 1993, 1847 RSC.
  14. U. Folli, F. Goldoni, D. Iarossi, S. Sbardellati and F. Taddei, J. Chem. Soc., Perkin Trans. 2, 1995, 1017 RSC.
  15. M. von Stackelberg and W. Z. Shacke, J. Electrochem. Soc., 1949, 53, 118; S. Wawzonek and R. C. Duty, J. Electrochem. Soc., 1961, 108, 1135 CAS.
  16. J.-P. Gisselbrecht and H. Lund, Acta Chem. Scand., Sect. B, 1985, 39, 773 Search PubMed.
  17. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef.
  18. GAUSSIAN 92, Revision C: M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Repogle, R. Gomberts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzales, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart and J. A. Pople, Gaussian Inc., Pittsburg, PA, 1992.
  19. D. D. M. Wayner, B. A. Sim and J. J. Dannenberg, J. Org. Chem., 1991, 560, 4853 CrossRef.
  20. F. Maran and E. Vianello, Tetrahedron Lett., 1990, 31, 5803 CrossRef CAS.
  21. K. B. Clark and D. D. M. Wayner, J. Am. Chem. Soc., 1991, 113, 9363 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.