Mechanistic study of amine oxidation catalysed by quinonoid cofactors

(Note: The full text of this document is currently only available in the PDF Version )

Kenji Kano, Masato Nakagawa, Kazuyoshi Takagi and Tokuji Ikeda


Abstract

A kinetic study was performed on the oxidative deamination of benzylamine (BzAm) catalysed by pyrroloquinoline quinone (PQQ), a tryptophan tryptophylquinone analogue [3-methyl-4-(3′-methylindol-2′-yl)indole-6,7-dione; TTQa], and a topa quinone analogue (6-hydroxydopa quinone; TPQa) using high-performance liquid chromatography under aerobic conditions and cyclic voltammetry under anaerobic conditions. The overall kinetics are second-order in the quinone and BzAm concentrations and independent of the electron acceptors used (dioxygen under aerobic conditions and electrode under anaerobic conditions). The second-order rate constants vs. pH profiles are explained in terms of the acid dissociation of BzAm and the quinones, yielding pH-independent second-order rate constants, which are in the order TTQa > PQQ [double greater-than, compressed] TPQa . Half-wave potentials of steady-state catalytic voltammograms are more positive than the redox potentials of the free quinones, indicating that the BzAm-reduced quinones are not quinols but the corresponding aminophenols, which are oxidized to iminoquinones. Iminoquinone forms of PQQ and TTQa exhibit lower catalytic activity compared with the quinone forms. The reaction rate of TTQa slows down with the time, while those of PQQ and TPQa are practically independent of the reaction time within a 15 min period. The diminished rate of TTQa is reasonably ascribed to slow hydrolysis of imino-TTQa to TTQa. Generation of the iminosemiquinone radical during the catalytic reactions is evidenced by EPR spectroscopic measurements. The significance of radical generation is discussed in the light of autoxidation of the aminophenols. All these results are interpreted well by a transamination mechanism. In addition, an asymmetric ortho-quinone structure is proposed to be important in catalytic amine oxidation activity, and the relatively low catalytic activity of free TPQa is ascribed to the contribution of a para-quinone-type electronic structure. On the basis of these results, a role for CuII is proposed as a transient intramolecular electron acceptor in copper amine oxidases to enhance the reactivity toward dioxygen through the generation of the imino-TPQ semiquinone and as a weak ligand in TPQ-containing amine oxidases making the TPQ cofactor bear an ortho-quinone-type electronic structure.


References

  1. S. A. Salisbury, H. A. Forrest, W. B. T. Cruse and O. Kennard, Nature, 1979, 280, 843 CAS; J. Westerling, J. Frank and J. A. Duine, Biochem. Biophys. Res. Commun., 1979, 87, 719 CrossRef CAS.
  2. S. M. Janes, D. Mu, D. Wemmer, A. J. Smith, S. Kaur, A. L. Burlingame and J. P. Klinman, Science, 1990, 248, 981 CAS.
  3. W. S. McIntire, D. E. Wemmer, A. Y. Christoserdov and M. E. Lidstrom, Science, 1991, 252, 817 CrossRef CAS.
  4. S. X. Wang, M. Mure, K. F. Medzihradszky, A. L. Burlingame, D. E. Brown, D. M. Dooley, A. J. Smith, H. M. Kagan and J. P. Klinman, Science, 1996, 273, 1078 CAS.
  5. For a review see: Principles and Applications of Quinoproteins, ed. V. L. Davidson, Marcel Dekker, New York, 1993 Search PubMed.
  6. For reviews see: Y. Ohshiro and S. Itoh, Bioorg. Chem., 1989, 19, 169 Search PubMed; Y. Ohshiro and S. Itoh, in ref. 4, p. 309 CrossRef CAS.
  7. (a) T. S. Eckert and T. C. Bruice, J. Am. Chem. Soc., 1983, 105, 4431 CrossRef CAS; (b) P. R. Sleath, J. B. Noar, G. A. Eberlein and T. C. Bruice, J. Am. Chem. Soc., 1985, 107, 3328 CrossRef CAS; (c) E. J. Rodriguez and T. C. Bruice, J. Am. Chem. Soc., 1989, 111, 7947 CrossRef CAS.
  8. (a) M. Mure and J. P. Klinman, J. Am. Chem. Soc., 1993, 115, 7117 CrossRef; (b) M. Mure and J. P. Klinman, J. Am. Chem. Soc., 1995, 117, 8698 CrossRef; (c) M. Mure and J. P. Klinman, J. Am. Chem. Soc., 1995, 117, 8718; (d) J. P. Klinman, Chem. Rev., 1996, 96, 2541 CrossRef CAS.
  9. (a) F. Wang, J.-Y. Bae, A. R. Jacobson, Y. Lee and L. M. Sayre, J. Org. Chem., 1994, 59, 2409 CrossRef CAS; (b) Y. Lee and L. M. Sayre, J. Am. Chem. Soc., 1995, 117, 3096 CrossRef CAS.
  10. (a) S. Itoh, M. Ogino, M. Komatsu and Y. Ohshiro, J. Am. Chem. Soc., 1992, 114, 7294 CrossRef CAS; (b) S. Itoh, M. Ogino, S. Haranou, T. Terasaka, T. Ando, M. Komatsu, Y. Ohshiro, S. Fukuzumi, K. Kano, K. Takagi and T. Ikeda, J. Am. Chem. Soc., 1995, 117, 1485 CrossRef CAS.
  11. (a) J. Z. Pedersen, S. El-Sherbini, A. Finazzi-Agrň and G. Rotilio, Biochemistry, 1992, 31, 8 CrossRef CAS; (b) N. Nakamura, T. Kohzuma, H. Kuma and S. Suzuki, J. Am. Chem. Soc., 1992, 114, 6550 CrossRef CAS; (c) M. A. Shah, P. R. Bergethon, A. M. Boak, P. M. Gallop and H. M. Kagan, Biochem. Biophys. Acta, 1992, 1159, 311 Search PubMed; (d) K. Kano, T. Mori, B. Uno, M. Goto and T. Ikeda, Biochem. Biophys. Acta, 1993, 1157, 324 Search PubMed; (e) M. Bosa, G. O. Morpurgo and L. Morpurgo, Biochemistry, 1994, 33, 4425 CrossRef.
  12. V. L. Davidson, L. H. Jones and M. E. Graichen, Biochemistry, 1992, 31, 3385 CrossRef CAS.
  13. C. Hartmann and J. P. Klinman, J. Biol. Chem., 1987, 262, 962 CAS; C. Hartmann, P. Brzovic and J. P. Klinman, Biochemistry, 1993, 32, 2234 CrossRef CAS.
  14. R. Medda, A. Padiglia, J. Z. Pedersen, G. Rotilio, A. Finazzi-Agrň and G. Floris, Biochemistry, 1995, 34, 16 375 CrossRef CAS.
  15. G. R. Bishop, H. B. Brooks and V. L. Davidson, Biochemistry, 1996, 35, 8948 CrossRef CAS.
  16. (a) D. M. Dooley, M. A. McGuirl, D. E. Brown, P. N. Turowski, W. McIntire and P. F. Knowles, Nature, 1991, 349, 262 CrossRef CAS; (b) P. N. Turowski, M. A. McGuirl and D. M. Dooley, J. Biol. Chem., 1993, 268, 17 680 CAS; (c) D. M. Dooley, W. S. McIntire, M. A. McGuirl, C. E. Cote and J. L. Bates, J. Am. Chem. Soc., 1990, 112, 2782 CrossRef CAS.
  17. J. McCracken, J. Peisach, C. E. Cote, M. A. McGuirl and D. M. Dooley, J. Am. Chem. Soc., 1992, 114, 3715 CrossRef CAS.
  18. A. Finazzi-Agrň, A. Rinaldi, G. Floris and G. Rotilio, FEBS Lett., 1984, 176, 378 CrossRef.
  19. (a) V. L. Davidson, Methods Enzymol., 1990, 188, 241 CAS; (b) K. Warncke, H. B. Brooks, G. T. Babcock, V. L. Davidson and J. McCracken, J. Am. Chem. Soc., 1993, 115, 6464 CrossRef CAS.
  20. A. C. F. Gorren, S. de Vries and J. A. Duine, Biochemistry, 1995, 34, 9748 CrossRef CAS.
  21. D. M. Dooley, W. S. McIntire, M. A. McGuirl, C. E. Coté and J. L. Bates, J. Am. Chem. Soc., 1990, 112, 2782 CrossRef CAS.
  22. K. P. S. Yadav and P. F. Knowles, Eur. J. Biochem., 1981, 114, 139 CAS.
  23. K. Kano, K. Mori, B. Uno, T. Kubota, T. Ikeda and M. Senda, Bioelectrochem. Bioenerg., 1990, 23, 227 CrossRef CAS.
  24. S. Itoh, Y. Kitamura, Y. Ohshiro and T. Agawa, Bull. Chem. Soc. Jpn., 1986, 59, 1907 CAS.
  25. Lange's Handbook of Chemistry, ed. J. A. Dean, 12th edn., McGraw-Hill, New York, 1979, ch. 5, p. 21 Search PubMed.
  26. S. Itoh, Y. Fukui, S. Haranou, M. Ogino, M. Komatsu and Y. Ohshiro, J. Org. Chem., 1992, 57, 4452 CrossRef CAS.
  27. A. J. Bard and L. R. Faulkner, in Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 1980, p. 457 Search PubMed.
  28. Ref. 27, p. 143.
  29. H. Tatsumi, K. Kano and T. Ikeda, Presented at the Annual Meeting of The Agricultural Chemistry Society of Japan held in Kyoto, March 30–April 2, 1996, Abstr., p. 69.
  30. J. M. Savéant and E. Vianello, Electrochim. Acta, 1965, 10, 905 CrossRef CAS; Y. Ogino, K. Takagi, K. Kano and T. Ikeda, J. Electroanal. Chem., 1995, 396, 517 CrossRef CAS.
  31. K. Kano, K. Mori, B. Uno and M. Goto, J. Electroanal. Chem., 1990, 293, 177 CrossRef CAS.
  32. Ref. 25, ch. 5, p. 42.
  33. V. L. Davidson, Biochem. J., 1989, 261, 107 CAS.
  34. Theoretically, eqn. (2) should be applied to the condition where the electroactive species (TTQa in this case) in the bulk phase is in the reduced form for the oxidative catalysis. When the oxidized TTQa remains somewhat in the bulk phase and is reduced slowly by BzAm during the voltammetric measurements, the oxidation current becomes slightly larger than expected by eqn. (2) due to the contribution of the substrate-reduced TTQa generated in the bulk.
  35. W. S. McIntire, J. Biol. Chem., 1987, 262, 11 012 CAS.
  36. V. L. Davidson and L. H. Jones, Biochim. Biophys. Acta, 1992, 1121, 104 CAS.
  37. E. J. Corey and K. Achiwa, J. Am. Chem. Soc., 1969, 91, 1429 CrossRef CAS; R. F. X. Klein, L. M. Bargas and V. Horak, J. Org. Chem., 1988, 53, 5994 CrossRef CAS.
  38. For a review see: G. Dryhurst, K. M. Kadish, F. Sheller and R. Renneberg, in Biological Electrochemistry, Academic Press, New York, 1982, vol. 1, ch. 2, pp. 116–179 Search PubMed.
  39. K. Kano, T. Konse, B. Uno and T. Kubota, in Redox Chemistry and Interfacial Behavior of Biological Molecules, eds. G. Dryhurst and K. Niki, Plenum, New York, 1988, p. 267 Search PubMed.
  40. C. Kemal, T. W. Chan and T. C. Bruice, J. Am. Chem. Soc., 1977, 99, 7272 CrossRef CAS.
  41. W. C. Kenny and W. McIntire, Biochemistry, 1983, 22, 3858 CrossRef.
  42. M. Husain, V. L. Davidson, K. A. Gray and D. B. Knaff, Biochemistry, 1987, 26, 4139 CrossRef CAS.
  43. D. M. Dooley, M. A. McGuirl, C. E. Cote, P. F. Knowles, I. Singh, M. Spiller, R. D. III Brown and S. H. Knoening, J. Am. Chem. Soc., 1991, 113, 154; M. A. McGuirl, D. E. Brown, C. D. McCahon, P. N. Turawski and D. M. Dooley, J. Inorg. Biochem., 1991, 43, 186 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.