13C NMR calculations on azepines and diazepines

(Note: The full text of this document is currently only available in the PDF Version )

Rainer Koch, Bernd Wiedel and Curt Wentrup


Abstract

Ab initio and DFT calculations of 13C NMR chemical shifts of 1H-, 2H- and 3H-azepines as well as recently synthesised 1H- and 5H-1,3-diazepines are reported. The reliabilities of the computational methods used for this purpose are evaluated by examining a large number of combinations of basis sets and geometry optimisations. Generally, the Becke3LYP/6-31+G* and HF/6-31G* or HF/6-31+G* single-point calculations based on MP2/6-31G* geometries give the best agreement with experiment (3–4 ppm deviation), better than the corresponding BLYP calculations. Localised orbital methods such as IGLO or LORG do not improve the accuracy. The 1H NMR chemical shifts are also calculated, but the smaller chemical shift range for protons makes the calculated data inherently less precise. Again, Becke3LYP/6-31G* or BLYP/6-31G* with MP2/6-31G* geometries and the HF/6-311+G(3df,2p)//HF/6-31G* combination give the best results. Overall, the 13C NMR calculations in particular are sufficiently precise to be a valuable tool in the identification of novel compounds of this type.


References

  1. A. Reisinger and C. Wentrup, J. Chem. Soc., Chem. Commun., 1996, 813 RSC.
  2. For a review see: D. Cremer, L. Olsson, F. Reichel and E. Kraka, Isr. J. Chem., 1993, 33, 369 Search PubMed.
  3. (a) M. Schindler and W. Kutzelnigg, J. Chem. Phys., 1982, 76, 1919 CrossRef CAS; (b) W. Kutzelnigg, Isr. J. Chem., 1980, 19, 193 CAS; (c) K. Wolinski, J. F. Hinton and P. Pulay, J. Am. Chem. Soc., 1990, 122, 8251 CrossRef.
  4. (a) M. Schindler and W. Kutzelnigg, J. Am. Chem. Soc., 1983, 105, 1360 CrossRef CAS; (b) M. Schindler and W. Kutzelnigg, Mol. Phys., 1983, 48, 781 CAS; (c) M. Schindler and W. Kutzelnigg, J. Am. Chem. Soc., 1987, 109, 1021; (d) M. Schindler, J. Am. Chem. Soc., 1987, 109, 5950 CrossRef CAS; (e) W. Kutzelnigg and M. Schindler, NMR, Basic Principles and Progress, Springer, Berlin, 1989, Vol. 23 Search PubMed; (f) J. Gauss, Chem. Phys. Lett., 1992, 191, 614 CrossRef CAS; (g) J. Gauss, J. Chem. Phys., 1993, 99, 3629 CrossRef CAS.
  5. See ref. 2 and references cited therein.
  6. G. Rauhut, S. Puyear, K. Wolinski and P. Pulay, J. Phys. Chem., 1996, 100, 6310 CrossRef CAS.
  7. W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986 Search PubMed.
  8. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. DeFrees, J. Baker, J. J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, GAUSSIAN 94; Gaussian Inc., Pittsburgh PA, 1995.
  9. Aa. E. Hansen and T. D. Bouman, J. Chem. Phys., 1985, 82, 5035 CrossRef CAS.
  10. UniChem 3.01: Cray Research, Inc., Mendota Heights MN, USA, 1995. DGauss 3.0: J. Andzelm and E. Wimmer, Oxford Molecular Group, Burnsville MN, USA, 1995.
  11. H. Jiao and P. v. R. Schleyer, personal communicationsee also M. Bühl and P. v. R. Schleyer, J. Am. Chem. Soc., 1992, 114, 477 Search PubMed.
  12. The geometries are almost unaffected by the inclusion of inner-shell orbitals for the optimisation. The influence on the relative chemical shifts is also negligible: shift calculations for several molecules using MP2(full)/6-31G*-optimised geometries give average differences from the MP2(fc)/6-31G* geometries of 0.5–1.0 ppm, the maximum being 3.1 ppm. See also G. Schreckenbach and T. Ziegler, Int. J. Quantum Chem., 1996, 60, 753 Search PubMed.
  13. D. Hamprecht, K. Polborn and W. Steglich, Angew. Chem., Int. Ed. Engl., 1995, 34, 1469 CrossRef CAS.
  14. E. Vogel, H.-J. Altenbach, J.-M. Drossard, H. Schmickler and H. Stegelmeier, Angew. Chem., Int. Ed. Engl., 1980, 19, 1016 CrossRef.
  15. D. Hamprecht, J. Josten and W. Steglich, Tetrahedron, 1996, 52, 10 883 CrossRef.
  16. The relative carbon chemical shifts vary by only ca. 1–2 ppm.
  17. The relative carbon chemical shifts for benzene imine (7-azabicyclo[4.1.0]hepta-2,4-diene) are 27.3 ppm (C2,7), 127.0 ppm (C3,6) and 123.9 ppm (C4,5), calculated at the HF/6-31+G**//HF/6-31G* level.
  18. A. Reisinger and C. Wentrup, unpublished work.
Click here to see how this site uses Cookies. View our privacy policy here.