A theoretical investigation of the near UV and VIS electronic spectra for the fully deprotonated forms of anhydrotetracycline

(Note: The full text of this document is currently only available in the PDF Version )

Wagner B. De Almedia, Luís Ricardo A. Costa, Hélio F. Dos Santos and Michael C. Zerner


Abstract

Anhydrotetracycline (AHTC) is the major toxic decomposition product of the antibiotic tetracycline with a characteristic electronic spectrum used for identification purposes. In the present work, the electronic spectra of the fully deprotonated forms (L2-) of the free AHTC molecule, the main species involved in the metal complexation reaction, have been analysed using the spectroscopic version of the INDO/S method. The polarization and specific solute–solvent interaction were analysed using the standard SCRF continuum model and the supermolecule approach. The theoretical band spectra were simulated by fitting the calculated frequency and oscillator strength values to a Lorentzian type function and directly compared with the experimental aqueous solution spectrum. For the L2-(10-O) deprotonated molecule, the theoretical spectrum in the near UV region showed three absorption bands located at 215, 261 and 336 nm, which are in very good agreement with the observed values: 220, 268 and 335 nm. All transitions were assigned as π→π* of the BCD ring chromophore with contributions of the A ring for the absorption at 261 nm. The same transitions were located at 222 and 261 nm for the L2-(11-O) and the shoulder at 236 nm is not observed.


References

  1. (a) A. I. Laskin and J. A. Last, Antibiot. Chemother., 1971, 17, 1 Search PubMed; (b) J. J. Stezowski, J. Am. Chem. Soc., 1976, 98, 6012 CrossRef CAS; (c) K. H. Jogun and J. J. Stezowski, J. Am. Chem. Soc., 1976, 98, 6018 CrossRef CAS; (d) H. A. Duarte, MSc Thesis, Depto. de Química, UFMG, 1992.
  2. J. M. Siqueria, S. Carvalho, E. B. Paniago, L. Tosi and H. Beraldo, J. Pharm. Sci., 1994, 83, 291.
  3. (a) S. V. M. Matos and H. Beraldo, J. Braz. Chem. Soc., 1995, 6, 405 Search PubMed; (b) J. M. Siqueira, MSc Thesis, Depto. de Química, UFMG, 1989.
  4. G. J. Palenik, M. Mathew and R. Restino, J. Am. Chem. Soc., 1978, 100, 4458 CrossRef CAS.
  5. L. Lambs, B. D.-Le Révérend, H. Kozlowski and G. Berthon, Inorg. Chem., 1988, 27, 3001 CrossRef CAS.
  6. H. F. Dos Santos, W. B. De Almeida and M. C. Zerner, unpublished work.
  7. (a) J. Ridley and M. C. Zerner, Theor. Chim. Acta, 1973, 32, 111 CrossRef CAS; (b) M. C. Zerner, G. H. Loew, R. F. Kirchner and V. T. Mueller-Westerholf, J. Am. Chem. Soc., 1980, 102, 589 CrossRef CAS; (c) J. D. Head and M. C. Zerner, Chem. Phys. Lett., 1986, 131, 359 CrossRef; (d) W. D. Edwalds and M. C. Zerner, Theor. Chim. Acta, 1987, 72, 347.
  8. M. M. Karelson and M. C. Zerner, J. Phys. Chem., 1992, 96, 6949 CrossRef CAS.
  9. W. L. Jorgensen, BOSS version 3.5, Biochemical and Organic Simulation System, 1995.
  10. (a) D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy, Dover Publication Inc., New York, ch. 5, 1989 Search PubMed; (b) M. G. Cory, H. Hirose and M. C. Zerner, Inorg. Chem., 1995, 34, 2969 CrossRef CAS.
  11. J. McKelvey, G. Pearl and M. C. Zerner, unpublished work.
  12. M. M. Karelson and M. C. Zerner, J. Am. Chem. Soc., 1990, 112, 9405 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.