Structure–reactivity relationships in the rate of esterification by acetylimidazole: the influence of the second hydroxy group and of the length of the N-ω-hydroxy-n-alkyl chain in 3-(N-methyl, N-ω-hydroxy-n-alkyl)amino-2- tert-butylpropan-1-ols

(Note: The full text of this document is currently only available in the PDF Version )

Annemieke Madder, Pierre J. De Clercq and Howard Maskill


Abstract

Enforced intramolecular hydrogen bonding facilitates intramolecular general base catalysis in the acetylation of a family of α,ω-amino alcohols by acetylimidazole, and the site of acetylation when there are two hydroxy groups is determined by the relative ease of intramolecular hydrogen bonding rather than by intermolecular steric effects.


References

  1. I. Steels, P. J. De Clercq and H. Maskill, J. Chem. Soc., Chem. Commun., 1993, 294 RSC.
  2. For examples of the hydrolysis of AcIm involving amino alcohols, see (a) D. G. Oakenfull and W. P. Jencks, J. Am. Chem. Soc., 1971, 93, 178 CrossRef; (b) D. G. Oakenfull, K. Salvesen and W. P. Jencks, J. Am. Chem. Soc., 1971, 93, 188 CrossRef; (c) for examples of esterification of amino alcohols with AcIm, see L. Anoardi and U. Tonellato, J. Chem. Soc., Chem. Commun., 1977, 401 Search PubMed.
  3. For a recent review on hydrogen bonding, see F. Hibbert and J. Emsley, Adv. Phys. Org. Chem., 1990, 26, 255 Search PubMed.
  4. For studies of intramolecular hydrogen bonding in some substituted amino alcohols, see (a) A. M. De Roos and G. A. Bakker, Rec. Trav. Chim. Pays-Bas, 1962, 81, 219; (b) M. G. Zaitseva, S. V. Bogatkov and E. M. Cherkasova, Zh. Obs. Khim., 1964, 35, 2056 Search PubMed; (c) A. F. Casy and M. M. A. Hassan, Can. J. Chem., 1969, 47, 1587 CAS; (d) R. Mathis, M.-T. Maurette, C. Godechot and A. Lates, Bull. Soc. Chim. Fr., 1970, 3047; (e) P. Gilli, V. Bertolasi, V. Ferrelti and G. Gilli, J. Am. Chem. Soc., 1994, 116, 909 CrossRef CAS; (f) J. Hine and M. N. Khan, Ind. J. Chem., Sect. B, 1992, 31, 427 Search PubMed.
  5. For studies on the basicity of amino alcohols, see (a) S. V. Bogatkov, V. N. Romaslov, N. I. Kholdyakov and E. M. Cherkasova, Zh. Obsch. Khim., 1959, 39, 247; (b) S. V. Bogatkov, E. Y. Skobeleva and E. M. Cherkasova, Zh. Obsch. Khim., 1966, 36, 138; (c) B. A. Koralev, M. A. Mal'tseva, A. I. Tarasov and V. A. Vasnev, Zh. Obsch. Khim., 1974, 44, 833; (d) G. Stevens, S. Chen, P. Huyskens and S. De Jaegere, Bull. Soc. Chim. Belg., 1991, 100, 493 CAS.
  6. The following pKa values in water have been reported for the conjugate acids of 1,2-, 1,3-, 1,4- and 1,5-amino alcohols: 9.50, 10.09, 10.38 and 10.61 respectively (see ref. 5d); the relative order follows the reduced influence of the inductive effect of HO as the chain lengthens.
  7. The hydrogen is not counted in the ring size designation in accord with a linear proton transfer.
  8. Six-membered ring transition states are particularly favoured for linear hydrogen transfers: (a) E. A. Dorigo and K. N. Houk, J. Am. Chem. Soc., 1987, 109, 2195 CrossRef; (b) P. Camilleri, C. A. Marby, B. Odell, H. S. Rzepa, R. N. Shepard, J. J. P. Stervart and D. J. Williams, J. Chem. Soc., Chem. Commun., 1989, 1722 RSC.
  9. Fig. 2 shows the minimum energy conformation of several lowenergy conformations found. Geometry calculated using Macromodel V3.0:W. C. Still, F. Mohamadi, N. G. J. Richards, W. C. Guida, M. Lipton, R. Liskamp, G. Chang, T. Hendrickson, F. DeGunst and W. Hasel, Department of Chemistry, Columbia University, New York, NY 10027, USA.