Some reactions of ammonia and primary amines with propanal, 2-chloroethanal, 2,2-dichloroethanal and 2,2,2-trichloroethanal in acetonitrile

(Note: The full text of this document is currently only available in the PDF Version )

Michael R. Crampton, Simon D. Lord and Ross Millar


Abstract

The reaction of ammonia with propanal in acetonitrile produces the hexahydrotriazine, 1, in good yield. The corresponding reaction of chloroethanal yields the cyclic trimer 16 but only in poor yield. Increasing chloro-substitution in the aldehyde stabilises the initially formed carbinolamines and disfavours trimerisation. Imines formed by reaction of primary amines with the aldehydes are relatively stable. Those formed from aliphatic amines may undergo slow dimerisation by C–C bond formation and this may be accompanied by loss of amine to yield products containing a conjugated double-bond system.Kinetic and equilibrium data are reported for both the forward and reverse reactions involving interconversion of propanal and ammonia with 1 in acetonitrile–water mixtures. The results indicate that dehydration of the carbinolamine is rate determining.


References

  1. S. Dayagi and Y. Degani, Chemistry of the Carbon-Nitrogen Double Bond, ed. S. Patai, Interscience, 1970, p. 61 Search PubMed.
  2. R. W. Layer, Chem. Rev., 1963, 63, 489 CrossRef CAS.
  3. M. M. Sprung, Chem. Rev., 1940, 26, 297 CrossRef CAS.
  4. R. L. Reeves, The Chemistry of the Carbonyl Group, ed. S. Patai, Interscience, 1966, p. 567 Search PubMed.
  5. A. T. Nielsen, R. L. Atkins, D. N. Moore, R. Scott, D. Mallory and J. M. La Berge, J. Org. Chem., 1973, 38, 3288 CrossRef CAS.
  6. E. C. Wagner, J. Org. Chem., 1954, 19, 1862 CrossRef CAS.
  7. C. K. Ingold and H. A. Piggott, J. Chem. Soc., 1923, 123, 2745 Search PubMed.
  8. M. S. Kharasch, J. Richlin and F. R. Mayo, J. Am. Chem. Soc., 1940, 62, 494 CrossRef CAS.
  9. M. Dal Colle, G. Distefano, D. Jones, A. Guerrino, G. Seconi and A. Modelli, J. Chem. Soc., Perkin Trans. 2, 1994, 789 RSC.
  10. K. N. Campbell, A. H. Sommers and B. K. Campbell, J. Am. Chem. Soc., 1994, 66, 82.
  11. M. D. Hurwitz, US Pat. 1952, 2582, 128; Chem. Abstr., 1952, 46, 8146 Search PubMed.
  12. A. T. Nielsen, R. A. Nissan, D. J. Vanderah, C. L. Coon, R. D. Gilardi, C. F. George and J. Flippen-Anderson, J. Org. Chem., 1990, 55, 1459 CrossRef CAS.
  13. M. R. Crampton, J. Hamid, R. Millar and G. Ferguson, J. Chem. Soc., Perkin Trans. 2, 1993, 923 RSC.
  14. A. Batsanov, J. C. Cole, M. R. Crampton, J. Hamid, J. A. K. Howard and R. Millar, J. Chem. Soc., Perkin Trans. 2, 1994, 421 RSC.
  15. A. T. Nielsen, Chemistry of Energetic Materials, eds. G. A. Olah and D. R. Squire, Academic Press, 1991, 95 Search PubMed.
  16. G. J. Karabatsos and S. S. Lande, Tetrahedron, 1968, 24, 3907 CrossRef CAS.
  17. R. M. Silverstein, G. C. Bassler and T. C. Morrill, Spectrometric Identification of Organic Compounds, Wiley, New York, 5th edn., 1991 Search PubMed.
  18. J. M. Kleigman and R. K. Barnes, J. Org. Chem., 1970, 35, 3140 CAS; Tetrahedron Lett., 1969, 1953 Search PubMed.
  19. R. P. Bell, Adv. Phys. Org. Chem., 1966, 4, 1 CAS.
  20. L. J. Bellamy and R. L. Williams, J. Chem. Soc., 1958, 3465 RSC.
  21. W. P. Jencks, Progr. Phys. Org. Chem., 1964, 2, 63 Search PubMed.
  22. J. F. Coetzee, Progr. Phys. Org. Chem., 1967, 4, 45 Search PubMed.
  23. J. Boeseken, F. Tellegen and M. Plusje, Recl. Trav. Chem. Pays-Bas, 1938, 57, 73 Search PubMed.