Synthesis of oxalate from carbon monoxide and carbon dioxide in the presence of caesium carbonate

(Note: The full text of this document is currently only available in the PDF Version )

Kiyoshi Kudo, Futoshi Ikoma, Sadayuki Mori, Koichi Komatsu and Nobuyuki Sugita


Abstract

In the presence of caesium carbonate, the direct reaction of CO2 (110 atm) with CO (50 atm) resulted in reductive capture of CO2 to give caesium oxalate in good yield (90.1%) at high temperature (380 °C). The reaction is characteristic of caesium carbonate. When lithium, sodium, potassium and rubidium carbonates were used, oxalate was scarcely produced. The effects of the reaction variables, such as the pressures of CO2 and CO, and the reaction temperature, were examined to optimize the process. From the results of mechanistic studies including a separately examined two-step reaction, 13C-labelling experiments and IR spectroscopic studies of the intermediates, it was concluded that the reaction proceeds through a nucleophilic addition of CO upon the carbonyl carbon of CO2 which is activated by the complexation to caesium carbonate.


References

  1. (a) A. Parkinson and P. E. Weaver, Nature (London), 1984, 309, 148 CrossRef CAS ; (b) Y. Hori, A. Murata, R. Takahashi and S. Suzuki, J. Am. Chem. Soc., 1987, 109, 5022 CrossRef CAS ; (c) H. Ishida, K. Tanaka and T. Tanaka, Organometallics, 1987, 6, 181 CrossRef CAS ; (d) G. D. Weatherbee and C. H. Bartholomew, J. Catal., 1984, 87, 352 CrossRef CAS .
  2. (a) K. Kudo, N. Sugita and Y. Takezaki, Nihon Kagaku Kaishi, 1977, 302 Search PubMed ; (b) E. Graf and W. Leitner, J. Chem. Soc., Chem. Commun., 1992, 629 RSC ; (c) F. Gassner and W. Leitner, J. Chem. Soc., Chem. Commun., 1993, 1465 RSC ; (d) P. G. Jessop, T. Ikariya and R. Noyori, Nature, 1994, 368, 231 CrossRef CAS .
  3. O. J. Darensbourg and C. Ovalles, J. Am. Chem. Soc., 1987, 109, 3330 CrossRef CAS  and references therein.
  4. (a) P. Haynes, L. H. Slaugh and J. F. Kohnle, Tetrahedron Lett., 1970, 365 CrossRef CAS ; (b) K. Kudo, H. Phala, N. Sugita and Y. Takezaki, Chem. Lett., 1977, 1495 CAS ; (c) H. Phala, K. Kudo and N. Sugita, Bull. Inst. Chem. Res., Kyoto Univ., 1981, 59, 88 Search PubMed .
  5. (a) P. G. Jessop, T. Ikariya and R. Noyori, Nature, 1994, 368, 231 CrossRef CAS ; (b) P. G. Jessop, T. Ikariya and R. Noyori, Chem. Rev., 1995, 95, 259 CrossRef CAS .
  6. For the preliminary report of this work, see K. Kudo, F. Ikoma, S. Mori, K. Komatsu and N. Sugita, J. Chem. Soc., Chem. Commun., 1995, 633 Search PubMed .
  7. (a) M. C. Boswell and J. V. Dickson, J. Am. Chem. Soc., 1918, 40, 1779 CAS ; (b) S. Takagi, J. Chem. Soc. Jpn., 1939, 60, 625; 805; 813; 971 .
  8. (a) J. I. Hales, J. Idris Jones and A. S. Lindsey, J. Chem. Soc., 1954, 3145 RSC ; (b) I. Hirao and T. Kito, Bull. Chem. Soc. Jpn., 1973, 46, 3470 .
Click here to see how this site uses Cookies. View our privacy policy here.