Isolation and characterisation of C70O

(Note: The full text of this document is currently only available in the PDF Version )

Valery N. Bezmelnitsin, Alexander V. Eletskii, Nikolay G. Schepetov, Anthony G. Avent and Roger Taylor


Abstract

C70O has been isolated in ca. 0.5% yield by HPLC separation of the soot extract obtained from a novel arc-discharge reactor for fullerene production. The reactor (DC conditions) can be operated continuously for 24 h, employs a rotating cathode and an anode consisting of continuously-fed strips cut from a carbon sheet. The 13C NMR spectrum of C70O shows that two isomers (1,2-epoxy[70]fullerene and 5,6-epoxy[70]fullerene) are present in a ratio of ca. 43∶57 and all 37 peaks corresponding to each isomer have been identified. These are the first [70]fullerene derivatives in which 5,6-addition is preferred over 1,2-addition, this preference probably deriving from the considerable strain that accompanies bridging with a single atom; the greater curvature across the 1,2-positions compared with the 5,6-positions therefore disfavours the former. Differential polarisabilities of the electrons of the 1,2- and 5,6-bonds, a factor producing a variation in reactivity order according to the attacking reagent (but not considered hitherto in the context of fullerene chemistry) may also be significant. The epoxides are unstable towards EI mass spectrometry, in contrast to epoxides possessing additional addends, and this may reflect the reduced cage strain present in the latter.


References

  1. F. Diederich, R. Ettl, Y. Rubin, R. L. Whetten, R. Beck, M. Alvarez, S. Anz, D. Sensharma, F. Wudl, K. C. Khemani and A. Koch, Science, 1991, 252, 548 CAS.
  2. R. Taylor, Phil. Trans. Roy. Soc. (London) A, 1993, 343, 87 Search PubMed.
  3. J. B. Howard, A. L. LaFleur, Y. Makarovsky, S. Mitra, C. J. Pope and T. K. Yadov, Carbon, 1992, 30, 1183 CrossRef CAS.
  4. D. Heyman and L. P. F. Chibante, Recl. Trav. Chim. Pays-Bas, 1993, 112, 531.
  5. A. B. Smith, R. M. Strongin, L. Brard, G. T. Furst, J. H. Atkins, W. J. Romanov, M. Saunders, H. A. Jiménez-Vázquez, K. G. Owens and R. J. Goldschmidt, J. Org. Chem., 1996, 61, 1904 CrossRef CAS.
  6. K. M. Creegan, J. L. Robbins, W. K. Robbins, J. M. Millar, R. D. Sherwood, P. J. Tindall, D. M. Cox, A. B. Smith, J. P. McCauley, D. R. Jones and R. T. Gallagher, J. Am. Chem. Soc., 1992, 114, 1103 CrossRef CAS; Y. Elemes, S. K. Silverman, C. Shen, M. Kao, C. S. Foote, M. M. Alvarez and R. L. Whetten, Angew. Chem., Int. Edn. Engl., 1992, 31, 351 CrossRef.
  7. K. Raghavachari and C. M. Rohlfing, Chem. Phys. Lett., 1992, 197, 495 CrossRef CAS.
  8. A. L. Balch, V. J. Catalano, J. W. Lee, M. M. Olmstead and S. R. Parkin, J. Am. Chem. Soc., 1991, 113, 8953 CrossRef CAS.
  9. A. Hirsch, T. Grösser, A. Skiebe and A. Soi, Chem. Ber., 1993, 126, 1061 CAS.
  10. C. Bingel, Chem. Ber., 1993, 126, 1957 CrossRef CAS; C. Bingel and H. Schiffer, Liebigs Ann., 1995, 1551 CAS.
  11. A. G. Avent, A. D. Darwish, D. K. Heimbach, H. W. Kroto, M. F. Meidine, J. P. Parsons, C. Remars, R. Roers, O. Ohashi, R. Taylor and D. R. M. Walton, J. Chem. Soc., Perkin Trans. 2, 1994, 15 RSC.
  12. C. C. Henderson, C. M. Rohlfing, K. T. Gillen and P. A. Cahill, Science, 1994, 264, 397 CAS.
  13. A. B. Smith III, R. M. Strongin, L. Brard, G. T. Furst, W. J. Romanow, K. G. Owens and R. J. Goldschmidt, J. Chem. Soc., Chem. Commun., 1994, 2187 RSC.
  14. M. S. Meier, M. Poplawska, A. L. Compton, J. P. Shaw, J. P. Selegue and T. F. Guarr, J. Am. Chem. Soc., 1994, 116, 7044 CrossRef CAS.
  15. H. Irngartinger, C.-M. Köhler, G. Baum and D. Fenske, Liebigs Ann. Chem., 1996, 1609 Search PubMed.
  16. J. M. Hawkins, A. Meyer and M. A. Solow, J. Am. Chem. Soc., 1993, 115, 7499 CrossRef CAS.
  17. M. F. Meidine, A. G. Avent, A. D. Darwish, H. W. Kroto, O. Ohashi, R. Taylor and D. R. M. Walton, J. Chem. Soc., Perkin Trans. 2, 1994, 1189 RSC.
  18. S. R. Wilson and Q. Lu, J. Org. Chem., 1995, 60, 6469.
  19. A. D. Darwish, A. G. Avent, R. Taylor and D. R. M. Walton, J. Chem. Soc., Perkin Trans. 2, 1996, 2079 RSC.
  20. A. Hermann, F. Diederich, C. Thilgen, H. Ulrich-ter-Meer and W. H. Müller, Helv. Chim. Acta, 1994, 77, 1689 CrossRef CAS.
  21. A. D. Darwish, H. W. Kroto, R. Taylor and D. R. M. Walton, J. Chem. Soc., Chem. Commun., 1994, 15 RSC.
  22. Whilst this paper was being pepared, Balch and co-workers reported X-ray structures for iridium complexes of the epoxides, which indicated the relative yields of the 1,2- and 5,6-isomers to be 41–46.4%: 59–53.6% in excellent agreement with our direct determination: A. L. Balch, D. A. Costa and M. M. Olmstead, Chem. Commun., 1996, 2449 Search PubMed.
  23. R. Taylor, J. P. Hare, A. K. Abdul-Sada and H. W. Kroto, J. Chem. Soc., Chem. Commun., 1990, 1423 RSC.
  24. R. Taylor, The Chemistry of Fullerenes, World Scientific, Singapore, 1995, p. 10 Search PubMed.
  25. J. Baker, P. W. Fowler, P. Lazzeretti, M. Malagoli and R. Zanasi, Chem. Phys. Lett., 1991, 184, 182 CrossRef CAS; R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1993, 813 RSC; C. C. Henderson, C. M. Rohlfing and P. A. Cahill, Chem. Phys. Lett., 1994, 264, 383; C. C. Henderson, C. M. Rohlfing, K. T. Gillen and P. A. Cahill, Science, 1994, 264, 397 CAS.
  26. R. C. Haddon, Science, 1993, 261, 1545 CAS.
  27. Y. Yukawa and Y. Tsuno, Bull. Chem. Soc. Jpn., 1959, 32, 971 CAS.
  28. R. Taylor, Electrophilic Aromatic Substitution, Wiley, Chichester, 1989, Table 3.11 Search PubMed.
  29. J. R. Knowles, R. O. C. Norman and G. K. Radda, J. Am. Chem. Soc., 1960, 4885 CAS.
  30. A. D. Darwish, P. R. Birkett, G. J. Langley, H. W. Kroto, R. Taylor and D. R. M. Walton, Fullerene Sci. Technol., in the press Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.