Photoionization of α-alkoxybenzyl radicals to yield α-alkoxybenzyl cations. Photochemistry of ω,ω-dimethoxy-ω- phenylacetophenone in polar solvents at high light intensities 1

(Note: The full text of this document is currently only available in the PDF Version )

Joaquim Luís Faria and Steen Steenken


Abstract

On photolysis of the photopolymerization initiator PhC(O)C(OMe)2Ph in aqueous or alcoholic solution with 248 nm laser pulses or with 248 nm followed by 308 nm pulses (two-laser–two-colour technique), the short-lived species PhC˙(OMe)2, PhC+(OMe)2 and e-solv were detected by their optical absorptions. The carbocation PhC+(OMe)2 and e-solv are the products of the monophotonic ionization of the radical PhC˙(OMe)2 [ϕ(308 nm) = 0.2 in aqueous solution] generated from the parent, PhC(O)C(OMe)2Ph, by α-cleavage [ϕ(248 nm) ca. 0.5]. PhC+(OMe)2 reacts with water to produce the hemi-orthoester PhC(OMe)2OH and H+ which was identified by time-resolved conductance. PhC(OMe)2OH decomposes to yield PhC(O)OMe and MeOH (identified by GC). The α-alkoxybenzyl radicals PhCH˙OR, produced by 248 nm photoinduced α-cleavage of the benzoin ethers PhC(O)CH(OR)Ph (R = Me, Et, Pri, But), also undergo ionization upon 248 or 308 nm photolysis. The rate constants for reaction of PhCH˙OR with the oxidants Fe(CN)63-, Ir(Cl)62-, O2 and PhI2+ are on average 5.9 × 109, 4.2 × 109, 2.8 × 109 and 1.7 × 108 dm3 mol-1 s-1, respectively. From the facile photoionization of the α-alkoxybenzyl radicals it is concluded that this process may also take place under the typical high-intensity light conditions used in industrial photocuring, i.e. that the latter may involve cationic polymerization.


References

  1. Current Address: Department of Chemical Engineering, FEUP, Rua dos Bragas, P-4050 Porto, Portugal Search PubMed.
  2. M. R. Sandner and C. L. Osborn, Tetrahedron Lett., 1974, 415 CrossRef CAS.
  3. J. P. Fouassier, P. Jacques, D. J. Lougnot and T. Pilot, Polym. Photochem., 1984, 5, 57 Search PubMed.
  4. H. J. Hageman, Progr. Org. Coat., 1985, 13, 123 Search PubMed.
  5. H. Fischer, R. Baer, R. Hany, I. Verhoolen and M. Walbiner, J. Chem. Soc., Perkin Trans. 2, 1990, 787 RSC.
  6. J. T. Banks, J. C. Scaiano, W. Adam and R. Schulte Oestrich, J. Am. Chem. Soc., 1993, 115, 2473 CrossRef CAS.
  7. R. Kuhlmann and W. Schnabel, Polymer, 1977, 18, 1163 CrossRef CAS; Angew. Makromol. Chem., 1978, 70, 145 Search PubMed.
  8. H. G. Heine, H. J. Rosenkranz and H. Rudolph, Angew. Chem., Int. Ed. Engl., 1972, 11, 974 CrossRef CAS; F. D. Lewis, R. T. Lauterbach, H. G. Heine, W. Hartmann and H. Rudolph, J. Am. Chem. Soc., 1975, 97, 1519 CrossRef CAS.
  9. J. Kosar, Light Sensitive Systems, Wiley, New York, 1965, p. 161 Search PubMed.
  10. S. Adam, H. Güsten, S. Steenken and D. Schulte-Frohlinde, Liebigs Ann. Chem., 1974, 1831 Search PubMed.
  11. J. P. Fouassier and A. Merlin, J. Photochem., 1980, 12, 17 CrossRef CAS.
  12. W. Adam and R. Schulte Oestrich, Chem. Ber., 1992, 125, 2463 CAS.
  13. F. Jent, H. Paul and H. Fischer, Chem. Phys. Lett., 1988, 146, 315 CrossRef CAS.
  14. The quantum yield for DMPA decomposition in benzene, acetonitrile, tert-butyl or isopropyl alcohol by 350 nm light has been estimated to be 0.15–0.25.2 More recently, a value of 0.5 was given for 365 nm excitation in acetonitrile solution: H. Baumann and H. J. Timpe, Z. Chem., 1984, 24, 18 Search PubMed.
  15. D. O. Cowan and R. L. Drisko, Elements of Organic Photochemistry, Plenum Press, New York, 1976 Search PubMed.
  16. E. S. Huyser and D. T. Wang, J. Org. Chem., 1964, 29, 2720 CAS.
  17. R. L. Huang, T. W. Lee and S. H. Ong, J. Chem. Soc. (C), 1969, 40 RSC; G. Behrens and D. Schulte-Frohlinde, Angew. Chem., Int. Ed. Engl., 1973, 12, 932 CrossRef.
  18. S. Steenken, H. P. Schuchmann and C. von Sonntag, J. Phys. Chem., 1975, 79, 763 CrossRef CAS.
  19. J. Bartl, S. Steenken, H. Mayr and R. A. McClelland, J. Am. Chem. Soc., 1990, 122, 6918 CrossRef.
  20. J. L. Faria and S. Steenken, J. Am. Chem. Soc., 1990, 112, 1277 CrossRef CAS.
  21. J. L. Faria and S. Steenken, J. Phys. Chem., 1992, 96, 10869 CrossRef CAS.
  22. W. Adam and R. Schulte Oestrich, J. Am. Chem. Soc., 1992, 114, 6031 CrossRef CAS.
  23. R. W. Redmond, J. C. Scaiano and L. J. Johnston, J. Am. Chem. Soc., 1990, 112, 398 CrossRef CAS.
  24. The IP of benzyl radical is 7.2 eV (F. A. Houle and J. L. Beauchamp, J. Am. Chem. Soc., 1978, 100, 3290). Substitution of a radical at Cα by OMe typically reduces the IP (by 2.8 eV in the case of methyl radical, cf. D. Danovich, Y. Apeloig and S. Shaik, J. Chem. Soc., Perkin Trans. 2, 1993, 321 and references cited therein). With two OMe groups at Cα, the Ei is thus expected to be ≪7 eV Search PubMed.
  25. J. F. Rabek, Mechanisms of Photophysical Processes and Photochemical Reactions in Polymers, Wiley, Chichester, 1987 Search PubMed.
  26. J. V. Crivello, in Cationic Polymerization and Related Processes, ed. E. J. Goethals, Academic Press, London, 1984; pp. 289–305 Search PubMed.
  27. A. Ledwith, Makromol. Chem., Suppl., 1979, 3, 348 Search PubMed.
  28. A. Ledwith, S. Al-Kass and A. Hulme-Lowe, in Cationic Polymerization and Related Processes, ed. E. J. Goethals, Academic, London, 1984; pp. 275–287 Search PubMed.
  29. Y. Yagci and W. Schnabel, Makromol. Chem., Makromol. Symp., 1988, 13/14, 161 Search PubMed; Y. Yagci, J. Borbely and W. Schnabel, Eur. Polym. J., 1989, 25, 129 CrossRef CAS.
  30. J. L. Faria and S. Steenken, J. Phys. Chem., 1993, 97, 1924 CrossRef CAS.
  31. For a description of this actinometer, see ref. 21.
  32. H. Lutz, E. Breheret and L. Lindquist, J. Phys. Chem., 1973, 77, 1758 CrossRef CAS.
  33. In contrast to the earlier work,5 we did not find C2H6;, the dimer of CH3. This is probably due to the presence in our solutions of the good H-donor isopropyl alcohol.
  34. R. A. McClelland, V. M. Kanagasabapathy and S. Steenken, Can. J. Chem., 1990, 68, 375 CAS.
  35. In a similar approach, H-abstraction from PhCH(OMe)2 has been affected with Me3CO, cf. ref. 6. See also ref. 10.
  36. In contrast to OH, O●– does not add to aromatic double bonds, but it H-abstracts from the side chain.
  37. The 232 nm peak was not seen in this pulse radiolysis experiment, due to insufficient analysing light intensity.
  38. The value has been corrected for the depletion of PhCH(OMe)2, whose ε at 275 nm is 220 dm3 mol–1 cm–1.
  39. K. Sehested, H. Corfitzen, H. C. Christensen and E. J. Hart, J. Phys. Chem., 1975, 79, 310 CrossRef CAS.
  40. The radical produced by H-abstraction from MeO is assumed, based on its aliphatic character, not to absorb above 250 nm.
  41. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 513 CAS.
  42. The conductance change was measured using pulses varying in power from 5 to 40 mJ. Even with the weakest pulse, the signal-to-noise was ≥50.
  43. S. Steenken and R. A. McClelland, J. Am. Chem. Soc., 1989, 111, 4967 CrossRef CAS.
  44. R. A. McClelland and M. Ahmad, J. Am. Chem. Soc., 1978, 98, 7027 CrossRef.
  45. There is precedence for reaction of stabilized cations with N3 with rate constants below the diffusion rate: F. L. Cozens, N. Mathivanan, R. A. McClelland and S. Steenken, J. Chem. Soc., Perkin Trans. 2, 1992, 2083 Search PubMed.
  46. The effect of depletion of DMPA was taken into account. The loss of DMPA was taken to be equal to the yield of radical. ε of DMPA is 5300, 2000 and 3500 dm3 mol–1 cm–1 in water (2% isopropyl alcohol), acetonitrile and methanol, respectively. The ε of the radical was considered independent of solvent and equal to 19 800 dm3 mol–1 cm–1.
  47. G. L. Hug, Natl. Stand. Ref. Data Ser., 1981, 69, 1 Search PubMed.
  48. It is reasonable to assume that the remaining 60% are due to O–Me bond cleavage (reaction 2).
  49. Y. Hirata, N. Mataga, Y. Sakata and S. Misumi, J. Phys. Chem., 1983, 87, 1493 CrossRef CAS See also ref. 30.
  50. The benzoyl radical, PhCO, produced by the photolysis of PhC(O)CH(OR)Ph [see eqn. (7)] may also react with Ox leading to its depletion. If this occurs, the rate constants are either very low (<107 dm3 mol–1 s–1) or the same as those for reaction of PhCH-(OR). This is concluded from the fact that there was only one kinetic component visible in the depletion of Ox.
  51. S. Steenken and P. Neta, J. Am. Chem. Soc., 1982, 104, 1244 CrossRef CAS.
  52. S. Steenken, J. Buschek and R. A. McClelland, J. Am. Chem. Soc., 1986, 108, 2808 CrossRef CAS.
  53. The observed difference in reactivity between IrC162– and Fe(CN)63– is opposite to expectation based on the driving force of the reaction. With the α-alkoxybenzyl radicals PhCH(OR) and PhC(OMe)2 the oxidation potentials may be very low. The radical Me2COH may be a suitable model. Its oxidation potential at pH 7 is ca.–2 V/NHE (M. Breitenkamp, A. Henglein and J. Lilie, Ber. Bunsenges. Phys. Chem., 1976, 80, 973. J. Lilie, G. Beck and A. Henglein, Ber. Bunsenges. Phys. Chem., 1971, 75, 458). If a similar number applies to the α-alkoxybenzyl radicals, the driving force for the electron transfer reaction to IrC162– is ca. 2.9 V. This value is large enough for Marcus inverted-region behaviour Search PubMed.
  54. R. A. McClelland and S. Steenken, J. Am. Chem. Soc., 1988, 110, 5860 CrossRef CAS.
  55. S. Spyroudis and A. Varvoglis, J. Chem. Soc., Chem. Commun., 1979, 615 RSC.
  56. G. E. Adams and R. L. Wilson, Trans. Faraday Soc., 1969, 65, 2981 RSC For a review, see P. Neta, R. E. Huie and A. B. Ross, J. Phys. Chem. Ref. Data, 1990, 19, 413 Search PubMed.
  57. V. Jagannadham and S. Steenken, J. Am. Chem. Soc., 1988, 110, 2188 CrossRef CAS; S. Steenken, Free Radicals in Synthesis and Biology, ed. F. Minisci, NATO ASI Series, C260, Kluwer Academic Publishers, Dordrecht, 1989, p. 213 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.