Noncovalent interactions in polyamine/nucleoside (or diaminocarboxylate) systems studied by potentiometric and NMR techniques

(Note: The full text of this document is currently only available in the PDF Version )

Lechoslaw Lomozik, Anna Gasowska and Leszek Bolewski


Abstract

Noncovalent interactions and formation of molecular complexes have been found to occur between a number of polyamines and adenosine or cytidine. Since these observed interactions affect the acid–base character of particular components of the systems the determination of overall stability constants of the complexes was possible on the basis of a computer analysis of potentiometric data and then equilibrium constants of the reactions were calculated. The comparison of the constants and the changes in the position of 13C NMR signals provided grounds for a conclusion that mainly two (or three) –NHx+ groups of amine and electron-rich centres as well as the system of π electrons from purine and pyrimidine bases constitute sites for the interactions. The tendency of particular polyamines to form adducts depends on the number of nitrogen atoms as well as the length of the methylene chains in the molecules. Distributions of molecular complexes as a function of pH were calculated. The ranges of the occurrence of PA/Nuc molecular complexes overlap with those of nucleoside deprotonation and polyamine protonation, which confirms the validity of the assumed model of interactions. It was found that in the polyamine systems with diaminocarboxylates no adducts were formed.


References

  1. L. Lomozik, in Handbook of Metal-Ligand Interactions in Biological Fluids, ed. G. Berthon, Bioiniorganic Chemistry, Marcel Dekker, NY, 1995, vol. I, p. 686 Search PubMed.
  2. C. W. Tabor and H. Tabor, Ann. Rev. Biochem., 1984, 53, 749 Search PubMed.
  3. Progress in Polyamine Research, ed. V. Zappia and A. E. Pegg, Plenum Press, NY, 1988 Search PubMed.
  4. L. Lomozik, Wiadomosci Chemiczne, 1994, 48, 439 Search PubMed.
  5. S. S. Cohen, Introduction to the Polyamines, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1971 Search PubMed.
  6. U. Bachrach, Function of Naturally Occurring Polyamines, Academic Press, NY, 1973 Search PubMed.
  7. Polyamines in Normal and Neoplastic Growth, ed. D. H. Russel, Raven Press Publishers, NY, 1973 Search PubMed.
  8. D. Podkonjak and J. Pasic, Iugosl. Physiol. Pharmacol. Acta, 1983, 19, 170 Search PubMed.
  9. J. Jänne, H. Pösö and A. Raina, Biochim. Biophys. Acta, 1978, 473, 241 CAS.
  10. A. Raina and J. Jänne, Med. Biol., 1975, 53, 121 Search PubMed.
  11. J. Jä;nne, L. Alhonen and P. Leinonen, Ann. Med., 1991, 23, 241 Search PubMed.
  12. O. P. Shukla, J. Sci. Ind. Res., 1990, 49, 263 Search PubMed.
  13. S. S. Cohen, Nature, 1978, 274, 209 CAS.
  14. L. J. Marton and B. G. Feuerstein, Pharm. Res., 1986, 3, 311 CrossRef CAS.
  15. R. W. Wilson and V. A. Bloomfield, Biochemistry, 1979, 18, 2192 CrossRef CAS.
  16. J. A. Schellman and N. Parthasarathy, J. Mol. Biol., 1984, 175, 313 CrossRef CAS.
  17. K. S. Srivenugopal, D. E. Wemmer and D. R. Morris, Nucleic Acids Res., 1987, 15, 2563 CrossRef CAS.
  18. P. M. Vertino, R. J. Bergeron, P. F. Cavanaugh Jr. and C. W. Porter, Biopolymers, 1987, 26, 691 CAS.
  19. K. Tomita, T. Hakoshima, K. Inubushi, S. Kunisawa, H. Ohishi, G. A. van der Marel, J. H. van Boom, A. H. J. Wang and A. Rich, J. Mol. Graphics, 1989, 7, 71 CrossRef CAS.
  20. B. G. Feuerstein, N. Pattabiraman and L. J. Marton, Nucl. Acids Res., 1990, 18, 1271 CAS.
  21. G. E. Plum, P. G. Arscott and V. A. Bloomfield, Biopolymers, 1990, 30, 631 CrossRef CAS.
  22. H. Ohishi, S. Kunisawa, G. van der Marel, J. H. van Boom, A. Rich, A. H. J. Wang, K. Tomita and T. Hakoshima, FEBS Lett., 1991, 284, 238 CrossRef CAS.
  23. T. J. Thomas, U. B. Gunnia and T. Thomas, J. Biol. Chem., 1991, 266, 6137 CAS.
  24. S. A. Allison, J. C. Herr and J. M. Schurr, Biopolymers, 1981, 20, 469 CrossRef CAS.
  25. H. D. Bratek-Wiewiorowska, M. Alejska, M. Figlerowicz, J. Barciszewski, M. Wiewiorowski, M. Jaskolski, W. Zielenkiewicz, A. Zielenkiewicz and M. Kaminski, Pure Appl. Chem., 1987, 59, 407.
  26. L. Lomozik and A. Gasowska, J. Bioinorg. Chem., 1996, 62, 103 Search PubMed.
  27. L. Lomozik, A. Gasowska and L. Bolewski, J. Bioinorg. Chem., 1996, 63, 191 Search PubMed.
  28. H. M. Irving, M. G. Miles and L. D. Pettit, Anal. Chim. Acta, 1967, 38, 475 CrossRef CAS.
  29. P. Gans, A. Sabatini and A. Vacca, J. Chem. Soc., Dalton Trans., 1985, 1195 RSC.
  30. N. Ingri, W. Kakolowicz, L. G. Sillen and B. Warqvist, Talanta, 1967, 14, 1261 CrossRef CAS.
  31. L. Lomozik, M. Jaskolski and A. Wojciechowska, Pol. J. Chem., 1991, 65, 1797 CAS.
  32. P. K. Glasoe and F. A. Long, J. Phys. Chem., 1960, 64, 188 CrossRef CAS.
  33. A. Wojciechowska, L. Bolewski and L. Lomozik, Monatsh. Chem., 1991, 122, 131 CAS.
  34. S. Bunce and E. S. W. Kong, Biophys. Chem., 1978, 8, 357 CrossRef CAS.
  35. I. Labadi, E. Jenei, R. Lahti and H. Lönnberg, Acta Chem. Scand., 1991, 45, 1055 CAS.
  36. A. Anichini, L. Fabbrizzi, R. Barbucci and A. Mastroianni, J. Chem. Soc., Dalton Trans., 1977, 2224 RSC.
  37. M. Delfini, A. L. Segre, F. Conti, R. Barbucci, V. Barone and P. Ferruti, J. Chem. Soc., Perkin Trans. 2, 1980, 900 RSC.
  38. A. Gasowska and L. Lomozik, Monatsh. Chem., 1995, 126, 13 CAS.
  39. U. Weser, G. J. Strobel, H. Rupp and W. Voelter, Eur. J. Biochem., 1974, 50, 91 CAS.
  40. A. J. Jones, D. M. Grant, M. W. Winkley and R. K. Robins, J. Am. Chem. Soc., 1970, 92, 4079 CrossRef CAS.
  41. L. Lomozik, L. Bolewski and R. Bregier-Jarzebowska, Pol. J. Chem., 1995, 69, 197 CAS.
  42. C. De Stefano, C. Foti and A. Gianguzza, Ann. Chim. (Rome), 1995, 85, 77 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.