Fluoro spin adducts and their modes of formation

(Note: The full text of this document is currently only available in the PDF Version )

Lennart Eberson and Ola Persson


Abstract

The reactions of two fluorinating reagents, XeF2 and N-fluorodibenzenesulfonamide [(PhSO2)2N–F], with several spin traps have been investigated. In dichloromethane, the strong oxidant XeF2 cleanly gives fluoro spin adducts with N-tert-butyl-α-phenylnitrone (PBN) or 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) according to a mechanism mediated by the radical cation of the spin trap. In both cases, further fluorination takes place with replacement of the α hydrogen by fluorine.The much weaker oxidant (PhSO2)2N–F reacts with PBN or DMPO in dichloromethane giving both the fluoro adduct and an adduct formally derived from an N-centred radical, assigned the structure of PhSO2N(F)–PBN[hair space]˙ or (PhSO2)2N–DMPO˙, respectively. This type of reaction proceeds by a version of the Forrester–Hepburn mechanism, in which an acid HA, in this case HF, initially adds to the nitrone function to give a hydroxylamine derivative which is oxidized by (PhSO2)N–F giving the fluoro spin adduct, a proton and the highly labile radical anion (PhSO2)2N–F[hair space]˙- . By decomposition of the latter to PhSO2(F)N- and PhSO2˙, conditions are set up for propagation of the reaction by a new molecule of HA [now PhSO2(F)NH] and thus formation of the PhSO2(F)N spin adduct.


References

  1. E. G. Janzen and J. I. Liu, J. Magn. Reson., 1973, 9, 510 CAS.
  2. E. G. Janzen, Acc. Chem. Res., 1971, 4, 31 CrossRef CAS.
  3. L. Eberson, J. Chem. Soc., Perkin Trans. 2, 1992, 1807 RSC.
  4. Unless otherwise stated, potentials were taken from: L. Eberson, Electron Transfer Reactions in Organic Chemistry, Springer-Verlag, Heidelberg, 1987 Search PubMed.
  5. L. Eberson, M. P. Hartshorn and O. Persson, J. Chem. Soc., Perkin Trans. 2, 1997, 195 RSC.
  6. W. Sümmerman and U. Deffner, Tetrahedron, 1975, 31, 593 CrossRef.
  7. A. R. Forrester and S. P. Hepburn, J. Chem Soc.(C), 1971, 701 Search PubMed.
  8. L. Eberson, J. Chem. Soc., Perkins Trans. 2, 1994, 171 RSC.
  9. P. E. Iversen and H. Lund, Anal. Chem., 1969, 41, 1322 CrossRef CAS.
  10. M. J. Shaw, J. A. Weil, H. H. Hyman and R. Filler, J. Am. Chem. Soc., 1970, 92, 5096 CrossRef CAS.
  11. C. P. Andrieux, E. Differding, M. Robert and J.-M. Savéant, J. Am. Chem. Soc., 1993, 115, 6592 CrossRef CAS.
  12. E. Differding and P. M. Bersier, 1992, 48, 1595.
  13. L. Eberson, M. P. Hartshorn, O. Persson and F. Radner, Chem. Commun., 1996, 2105 RSC.
  14. For a review, see N. L. Bauld, Tetrahedron, 1989, 45, 5307 Search PubMed.
  15. For a review, see G. S. Lal, G. P. Pez and R. G. Syvret, Chem. Rev., 1996, 96, 1737 Search PubMed.
  16. L. Eberson, O. Persson, F. Radner and M. P. Hartshorn, Res. Chem. Intermed., 1996, 22, 799 CAS.
  17. L. Eberson, J. E. Barry, M. Finkelstein, W. M. Moore and S. D. Ross, Acta Chem. Scand., Ser. B, 1986, 40, 283 Search PubMed.
  18. L. Eberson, M. P. Hartshorn and O. Persson, unpublished results.
  19. L. Eberson, J. McCollough and O. Persson, J. Chem. Soc., Perkin Trans. 2, 1997, 133 RSC.
  20. P. Carloni, L. Eberson, L. Greci, P. Sgarabotti and P. Stipa, J. Chem. Soc., Perkins Trans. 2, 1996, 1297 RSC.
  21. M. Martiny, E. Steckhan and T. Esch, Chem. Ber., 1993, 126, 1671 CAS.
  22. L. Eberson and O. Persson, J. Chem. Soc., Perkin Trans. 2, in the press Search PubMed.
  23. J. C. Evans, S. K. Jackson and C. C. Rowlands, Tetrahedron, 1985, 41, 5191, 5195.
  24. R. D. Hinton and E. G. Janzen, J. Org. Chem., 1992, 57, 2646 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.