Interconversion and rearrangement of radical cations. Part 2.1 Photoinduced electron transfer and electrochemical oxidation of 1,4-bis(methylene)cyclohexane

(Note: The full text of this document is currently only available in the PDF Version )

H. J. P. de Lijser and Donald R. Arnold


Abstract

The photoinduced electron transfer and electrochemical oxidation of 1,4-bis(methylene)cyclohexane (2) in acetonitrile have been studied in the presence and absence of a nucleophile (methanol). The photoinduced electron transfer reactions of 2 in acetonitrile–methanol solution with 1,4-dicyanobenzene (8) as the electron acceptor gives two products: 4-(methoxymethyl)-1-methylenecyclohexane (16) and 4-(4-cyanophenyl)-4-(methoxymethyl)-1-methylenecyclohexane (17). These products arise from nucleophilic attack on the radical cation followed by either reduction and protonation or combination with the radical anion of the electron acceptor, 1,4-dicyanobenzene (8˙-). These results are in accord with the proposed mechanism of the photochemical nucleophile–olefin combination, aromatic substitution (photo-NOCAS) reaction. In the absence of a nucleophile, the photoinduced electron transfer reaction of 2 gives rise to several interesting and unexpected products 18–25 which result from complex reaction mechanisms involving radical, ionic and radical ion intermediates.The electrooxidation of 2 in acetonitrile in the presence of methanol leads to products 27–35. Under these conditions the radical cation 2˙+ reacts with the nucleophile followed by a second oxidation and subsequent reactions leading to products (electrochemical–chemical–electrochemical, ECE). One of the products (28) is the result of protonation of 2 followed by nucleophilic attack. The electrochemical oxidation of 2 in acetonitrile (no methanol) yields 2˙+ which is deprotonated and then further oxidized to give 39–43. These products arise from ionic intermediates (ECE); oxidation of 2 all the way to aromatic compounds was observed in 39–41.In none of these experiments was there any evidence for the formation of cyclized products, nor was there any indication of carbon–carbon bond cleavage in 2˙+. The products are consistent with the initial formation of the intermediate radical cation. The products as well as the possible mechanisms of formation of these species are discussed.


References

  1. H. J. P. de Lijser and D. R. Arnold, J. Phys. Chem., 1996, 100, 3996 CrossRef CAS.
  2. (a) Photoinduced Electron Transfer, Part A, eds. M. A. Fox and M. Chanon, Elsevier, Amsterdam, 1988 Search PubMed; (b) S. L. Mattes and S. Farid, in Organic Photochemistry, ed. A. Padwa, Marcel Dekker, New York, 1983, vol. 6, p. 233 Search PubMed; (c) G. J. Kavernos and N. J. Turro, Chem. Rev., 1986, 86, 401 CrossRef CAS; (d) G. J. Gavernos, Top. Curr. Chem., 1992, 163, 131; (e) J. Mattay, Angew. Chem., Int. Ed. Engl., 1987, 26, 825 CrossRef; (f) A. Albini, M. Mella and M. Freccero, Tetrahedron, 1994, 50, 575 CrossRef CAS.
  3. L. Eberson, J. H. P. Utley and O. Hammerich, in Organic Electrochemistry, eds. H. Lund and M. M. Baizer, Marcel Dekker, New York, 3rd edn., 1991, p. 505 Search PubMed.
  4. (a) Ion-Molecule Reactions, ed. J. L. Franklin, Plenum Press, New York, 1972 Search PubMed; (b) Tandem Mass Spectrometry, ed. F. W. McLafferty, Wiley, 1983 Search PubMed; (c) J. R. O'Lear, L. G. Wright, J. N. Louris and R. G. Cooks, Org. Mass Spectrom., 1987, 22, 348 CAS; (d) J. L. Holmes, Org. Mass Spectrom., 1985, 20, 169 CAS; (e) P. C. Burgers and J. K. Terlouw, Mass Spectrom., 1989, 10, 35 Search PubMed.
  5. (a) T. Shida, E. Haselbach and T. Bally, Acc. Chem. Res., 1984, 17, 180 CrossRef CAS; (b) M. C. R. Symons, Chem. Soc. Rev., 1984, 393 RSC.
  6. (a) P. E. Eaton and G. H. Temme III, J. Am. Chem. Soc., 1973, 95, 7508 CrossRef CAS; (b) K. B. Wiberg, G. A. Epling and M. Jason, J. Am. Chem. Soc., 1974, 96, 912 CrossRef CAS; (c) J. J. Dannenberg, T. M. Provic and C. Hutt, J. Am. Chem. Soc., 1974, 96, 914 CrossRef; (d) K. B. Wiberg, W. E. Pratt and W. F. Bailey, J. Am. Chem. Soc., 1977, 99, 2297 CrossRef CAS; (e) K. B. Wiberg and M. G. Matturro, Tetrahedron Lett., 1981, 22, 3481 CrossRef CAS; (f) K. B. Wiberg, Acc. Chem. Res., 1984, 17, 379 CrossRef CAS; (g) K. B. Wiberg, J. J. Cartingi, J. J. Matturro and M. G. Matturro, J. Am. Chem. Soc., 1990, 112, 5854 CrossRef CAS.
  7. (a) W.-D. Stohrer and R. Hoffmann, J. Am. Chem. Soc., 1972, 94, 779 CrossRef CAS; (b) M. D. Newton and J. M. Schulman, J. Am. Chem. Soc., 1972, 94, 4391 CrossRef CAS; (c) D. Feller and E. R. Davidson, J. Am. Chem. Soc., 1987, 109, 4133 CrossRef CAS.
  8. (a) R. G. Doerr and P. S. Skell, J. Am. Chem. Soc., 1967, 89, 3062 CrossRef CAS; (b) P. S. Skell and R. G. Doerr, J. Am. Chem. Soc., 1967, 89, 4688 CrossRef CAS; (c) F. Weiss, Q. Rev. Chem. Soc., 1970, 24, 278 RSC; (d) J. J. Gajewski, A. Yeshuran and E. J. Bair, J. Am. Chem. Soc., 1972, 94, 2138 CrossRef CAS; (e) G. Maier, D. Jürgen, R. Tross, H. P. Reisenauer, B. A. Hess, Jr. and L. J. Schaad, Chem. Phys., 1994, 189, 383 CrossRef CAS.
  9. (a) P. Binger, Angew. Chem., Int. Ed. Engl., 1972, 11, 309 CrossRef CAS; (b) P. Binger, Angew. Chem., Int. Ed. Engl., 1972, 11, 433 CrossRef CAS; (c) W. R. Dolbier, Jr., D. Lomas, T. Garza, C. Harmon and P. Tarrant, Tetrahedron, 1972, 28, 3185 CrossRef; (d) M. J. Doyle, J. McMeeking and P. Binger, J. Chem. Soc., Chem. Commun., 1976, 376 RSC; (e) P. Binger, M. J. Doyle and R. Benn, Chem. Ber., 1983, 116, 1 CrossRef CAS; (f) P. Binger, A. Brinkmann and P. Wedemann, Chem. Ber., 1983, 116, 2920 CAS.
  10. (a) D. R. Arnold, X. Du and H. J. P. de Lijser, Can. J. Chem., 1995, 73, 522 CAS; (b) D. R. Arnold, X. Du and J. Chen, Can. J. Chem., 1995, 73, 307 CAS; (c) D. R. Arnold and X. Du, Can. J. Chem., 1994, 72, 403 CAS; (d) A. L. Perrott and D. R. Arnold, Can. J. Chem., 1992, 70, 272 CAS; (e) R. Popielarz and D. R. Arnold, J. Am. Chem. Soc., 1990, 112, 3068 CrossRef CAS; (f) D. R. Arnold and M. S. Snow, Can. J. Chem., 1988, 66, 3012 CAS; (g) R. M. Borg, D. R. Arnold and T. S. Cameron, Can. J. Chem., 1984, 62, 1785 CAS; (h) R. A. Neunteufel and D. R. Arnold, J. Am. Chem. Soc., 1973, 95, 4080 CrossRef CAS; (i) K. McMahon and D. R. Arnold, Can. J. Chem., 1993, 71, 450 CAS.
  11. (a) J. P. Dinnocenzo, W. P. Todd, T. R. Simpson and I. R. Gould, J. Am. Chem. Soc., 1990, 112, 1462; (b) J. P. Dinnocenzo, D. R. Lieberman and T. R. Simpson, J. Am. Chem. Soc., 1993, 115, 366 CrossRef CAS; (c) L. J. Johnston and N. P. Schepp, Pure Appl. Chem., 1995, 67, 71 CrossRef CAS.
  12. D. D. M. Wayner and D. R. Arnold, Can. J. Chem., 1985, 63, 871 CAS.
  13. (a) D. R. Arnold, K. A. McManus and X. Du, Can. J. Chem., 1994, 72, 415 CAS; (b) D. A. Connor, D. R. Arnold, P. K. Bakshi and T. S. Cameron, Can. J. Chem., 1995, 73, 762 CAS; (c) K. A. McManus and D. R. Arnold, Can. J. Chem., 1995, 73, 2158 CAS; (d) D. R. Arnold, D. A. Connor, K. A. McManus, P. K. Bakshi and T. S. Cameron, Can. J. Chem., 1996, 74, 602 CAS; (e) P. S. Engel, D. M. Robertson, J. N. Scholz and H. J. Shine, J. Org. Chem., 1992, 57, 6178 CrossRef CAS; (f) S. Hintz, A. Heidbreder and J. Mattay, Top. Curr. Chem., 1996, 177, 77.
  14. (a) Q.-X. Guo, X.-Z. Qin, J. T. Wang and F. Williams, J. Am. Chem. Soc., 1988, 110, 1974 CrossRef CAS; (b) F. Williams, Q.-X. Guo, D. C. Bebout and B. K. Carpenter, J. Am. Chem. Soc., 1989, 111, 4133 CrossRef CAS.
  15. L. S. Prasad, R. Ding, E. G. Bradford, L. D. Kispert and H. Wang, Isr. J. Chem., 1989, 29, 33 CAS.
  16. K. A. McManus, M. S. W. Chan and D. R. Arnold, Can. J. Chem., 1996, 74, 2143 CAS.
  17. D. Rehm and A. Weller, Isr. J. Chem., 1970, 8, 259 CAS.
  18. M. St-Jacques and M. Bernard, Can. J. Chem., 1969, 47, 2911 CAS.
  19. Ab initio calculations (MP2/6-31G*//HF-6-31G*) have shown that the spin and charge density in the phenyl radical and in the p-cyanophenyl radical are very similar and their behaviour should therefore also be similar.
  20. J. C. Scaiano and L. C. Stewart, J. Am. Chem. Soc., 1983, 105, 3609 CrossRef CAS.
  21. (a) See for example: A. L. J. Beckwith, D. M. O'Shea and S. W. Westwood, J. Am. Chem. Soc., 1988, 110, 2565 Search PubMed; (b) Yu. N. Ogibin, E. I. Troyanskii and G. I. Nikishin, Izv. Akad. Nauk. SSSR Ser. Khim., 1975, 1461 Search PubMed; (c) R. A. Kaba, D. Griller and K. U. Ingold, J. Am. Chem. Soc., 1974, 96, 6202 CrossRef CAS; (d) J. R. Shelton and C. W. Uzelmeier, J. Am. Chem. Soc., 1966, 88, 5222 CrossRef CAS.
  22. There is, to the best of our knowledge, only one specific example of a carbon-centred radical adding to the carbon of the nitrile in acetonitrile;22a there are several examples in the literature of heteroatom radicals adding to acetonitrile: hydrogen atoms add to the CN triple bond in acetonitrile;21b,c tertiary amine–boryl radicals add to nitriles to give iminyl radicals [R3N→BH2C(R′)][double bond, length as m-dash]N]21d,e as do primary amine–boryl radicals,21f and the ammonia–boryl radical;21g reaction of the β-distonic radical cation CH2–CH2–O–CH2+ with acetonitrile is thought to proceed by either a ‘head on’ radical addition to the nitrogen of acetonitrile or a ‘side on’ electrophilic addition to the nitrogen.21h (a) P. S. Engel, W.-K. Lee, G. E. Marschke and H. J. Shine, J. Org. Chem., 1987, 52, 2813 CrossRef CAS; (b) P. Neta, G. R. Holdren and R. H. Schuler, J. Phys. Chem., 1971, 75, 449 CrossRef; (c) G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 513 CAS; (d) J. A. Baban, V. P. J. Marti and B. P. Roberts, J. Chem. Soc., Perkin Trans. 2, 1985, 1723 RSC; (e) V. Paul and B. P. Roberts, J. Chem. Soc., Perkin Trans. 2, 1988, 1183 RSC; (f) J. N. Kirwan and B. P. Roberts, J. Chem. Soc., Perkin Trans. 2, 1989, 539 RSC; (g) V. P. J. Marti and B. P. Roberts, J. Chem. Soc., Perkin Trans. 2, 1986, 1613 RSC; (h) D. Wittneben and H.-F. Grützmacher, Int. J. Mass Spectrom. Ion Processes, 1990, 100, 545 CrossRef CAS.
  23. (a) H. D. Roth, Top. Curr. Chem., 1992, 163, 131; (b) H. D. Roth, Acc. Chem. Res., 1987, 20, 343 CrossRef CAS; (c) N. L. Bauld, D. J. Bellville, B. Harirchian, K. T. Lorenz, R. A. Pabon, Jr., D. W. Reynolds, D. D. Wirth, H.-S. Chiou and B. K. Marsh, Acc. Chem. Res., 1987, 20, 371 CrossRef CAS; (d) N. L. Bauld, D. J. Bellville, R. Pabon, R. Chelsky and G. Green, J. Am. Chem. Soc., 1983, 105, 2378 CrossRef CAS; (e) R. A. Pabon and N. L. Bauld, J. Am. Chem. Soc., 1984, 106, 1145 CrossRef CAS; (f) N. P. Schepp and L. J. Johnston, J. Am. Chem. Soc., 1994, 116, 6895 CrossRef CAS; (g) N. P. Schepp and L. J. Johnston, J. Am. Chem. Soc., 1996, 118, 2872 CrossRef CAS; (h) M. Kojima, A. Kakehi, A. Ishida and S. Takamuku, J. Am. Chem. Soc., 1996, 118, 2612 CrossRef CAS.
  24. (a) T. Shono and A. Ikeda, J. Am. Chem. Soc., 1972, 94, 7892 CrossRef CAS; (b) T. Shono, A. Ikeda, J. Hayashi and S. Hakozaki, J. Am. Chem. Soc., 1975, 97, 4261 CrossRef CAS; (c) P. G. Gassman and R. Yamaguchi, Tetrahedron, 1982, 38, 1113 CrossRef CAS.
  25. (a) A. J. Fry, Synthetic Organic Electrochemistry, Harper & Row, New York, 1972 Search PubMed; (b) C. K. Mann and K. K. Barnes, Electrochemical Reactions in Nonaqueous Systems, Marcel Dekker, New York, 1970 Search PubMed; (c) D. Kyriacou, Modern Electroorganic Chemistry, Springer-Verlag, New York, 1994 Search PubMed.
  26. A. M. de P. Nicholas and D. R. Arnold, Can. J. Chem., 1982, 60, 2165 CAS.
  27. L. M. Harwood, Aldrichimica Acta, 1985, 18, 25 Search PubMed.
  28. A. Okamoto, M. S. Snow and D. R. Arnold, Tetrahedron, 1986, 42, 6175 CrossRef CAS.
  29. D. R. Arnold and D. D. M. Wayner, Can. J. Chem., 1986, 64, 100.
  30. (a) R. S. Nicholson and I. Shain, Anal. Chem., 1964, 36, 706 CrossRef CAS; (b) Anal. Chem., 1965, 37, 178 Search PubMed.
  31. C. L. Perris and R. M. Christenson, J. Org. Chem., 1960, 25, 1888 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.