Competitive charge-remote and anion-induced fragmentations of the non-8-enoate anion. A charge-remote reaction which co-occurs with hydrogen scrambling

(Note: The full text of this document is currently only available in the PDF Version )

Suresh Dua, John H. Bowie, Blas A. Cerda, Chrys Wesdemiotis, Mark. J. Raftery, Julian F. Kelly, Mark S. Taylor, Stephen J. Blanksby and Mark A. Buntine


Abstract

The non-8-enoate anion undergoes losses of the elements of C3H6, C4H8 and C6H12 on collisional activation. The mechanisms of these processes have been elucidated by a combination of product ion and labelling (2H and 13C) studies, together with a neutralisation reionisation mass spectrometric study. These studies allow the following conclusions to be made. (i) The loss of C3H6 involves cyclisation of the enolate anion of non-8-enoic acid to yield the cyclopentyl carboxylate anion and propene. (ii) The loss of ‘C4H8’ is a charge-remote process (one which proceeds remote from the charged centre) which yields the pent-4-enoate anion, butadiene and dihydrogen. This process co-occurs and competes with complex H scrambling. (iii) The major loss of ‘C6H12’ occurs primarily by a charge-remote process yielding the acrylate anion, hexa-1,5-diene and dihydrogen, but in this case no H scrambling accompanies the process. (iv) It is argued that the major reason why the two charge-remote processes occur in preference to anion-induced losses of but-1-ene and hex-1-ene from the respective 4- and 2-anions is that although these anions are formed, they have alternative and lower energy fragmentation pathways than those involving the losses of but-1-ene and hex-1-ene; viz. the transient 4-anion undergoes facile proton transfer to yield a more stable anion, whereas the 2-(enolate) anion undergoes preferential cyclisation followed by elimination of propene [see (i) above].


References

  1. J. H. Bowie, Mass Spectrom. Rev., 1990, 9, 349 CAS.
  2. J. H. Bowie, in Experimental Mass Spectrometry, ed. D. H. Russell, Plenum Press, New York and London, 1994, pp. 1–38 Search PubMed.
  3. P. C. H. Eichinger and J. H. Bowie, Int. J. Mass Spectrom. Ion Processes, 1991, 110, 123 CrossRef CAS.
  4. S. Dua, J. H. Bowie and J. C. Sheldon, J. Chem. Soc., Perkin Trans. 2, 1994, 543 RSC.
  5. J. Adams and M. L. Gross, J. Am. Chem. Soc., 1986, 108, 6915 CrossRef CAS.
  6. J. Adams and M. L. Gross, J. Am. Chem. Soc., 1989, 111, 435 CrossRef CAS and references cited therein.
  7. J. Adams, Mass Spectrom. Rev., 1990, 9, 141 CAS.
  8. M. L. Gross, Int. J. Mass Spectrom. Ion Processes, 1992, 118/119, 137 CrossRef.
  9. V. H. Wysocki, M. H. Bier and R. G. Cooks, Org. Mass Spectrom., 1988, 23, 627 CAS.
  10. V. H. Wysocki, M. M. Ross, S. R. Horning and R. G. Cooks, Rapid Commun. Mass Spectrom., 1988, 2, 214 CAS.
  11. V. H. Wysocki and M. M. Ross, Int. J. Mass Spectrom. Ion Processes, 1991, 104, 179 CrossRef CAS.
  12. M. M. Cordero and C. Wesdemiotis, Anal. Chem., 1994, 66, 861 CrossRef CAS.
  13. M. M. Siegel and N. B. Colthup, Appl. Spectrosc., 1988, 42, 1214 CAS.
  14. K. M. Downard, J. C. Sheldon, J. H. Bowie, D. E. Lewis and R. N. Hayes, J. Am. Chem. Soc., 1989, 111, 8112 CrossRef CAS and references cited therein.
  15. W. Sonneveld, D. Van der Steen and H. J. J. Pabon, Recl. Trav. Chim., Pays-Bas, 1968, 87, 1110 CAS; Ng. Dinh-Nguhen, Arkiv. Kemi, 1968, 28, 289 Search PubMed.
  16. Gaussian 94, Revision C.3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheesman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Latham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. V. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian Inc., Pittsburgh, PA, 1995.
  17. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Depuis and J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347 CrossRef CAS.
  18. M. J. Polce, S. Beranova, M. J. Nold and C. Wesdemiotis, J. Mass Spectrom., 1996, 31, 1073 CrossRef CAS.
  19. P. C. Burgers, J. L. Holmes, A. A. Mommers, J. E. Szulejko and J. K. Terlouw, Org. Mass Spectrom., 1984, 19, 422.
  20. F. W. McLafferty and D. B. Stauffer, Wiley/NBS Registry of Mass Spectral Data, 1989, Wiley, New York Search PubMed.
  21. F. W. McLafferty and F. Turecek, Interpretation of Mass Spectra, University Science Books, Mill Valley, CA, 4th edn., 1993 Search PubMed.
  22. S. Beranova and C. Wesdemiotis, J. Am. Soc. Mass Spectrom., 1994, 5, 1093 CrossRef CAS.
  23. S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin and W. G. Mallard, Gas Phase Ion and Neutral Thermochemistry, J. Phys. Chem. Ref. Data 17, 1988, Suppl. 1. The computer-based version was used Search PubMed.
  24. S. T. Graul and R. R. Squires, J. Am. Chem. Soc., 1990, 112, 2506 CrossRef CAS and references cited therein K. M. Downard, R. N. Hayes and J. H. Bowie, J. Chem. Soc., Perkin Trans. 2, 1992, 1815 Search PubMed.
  25. J. K. Terlouw, P. C. Burgers and H. Hommes, Org. Mass Spectrom., 1979, 14, 307.
  26. G. W. Adams, J. H. Bowie and R. N. Hayes, J. Chem. Soc., Perkin Trans. 2, 1991, 689 RSC.
  27. D. J. Burinsky, R. G. Cooks, E. K. Chess and M. L. Gross, Anal. Chem., 1982, 54, 295 CAS; M. L. Gross, E. K. Chess, P. A. Lyon, F. W. Crow, S. Evans and H. Tudge, Int. J. Mass Spectrom. Ion Phys., 1982, 42, 574 CrossRef CAS.
  28. M. J. Polce, M. M. Cordero, C. Wesdemiotis and P. A. Bott, Int. J. Mass Spectrom. Ion Processes, 1992, 113, 35 CrossRef CAS.
  29. R. P. Linstead and H. N. Rydon, J. Chem. Soc., 1933, 580 RSC.
  30. R. P. Linstead and H. N. Rydon, J. Chem. Soc., 1934, 1995 RSC.
  31. H. Stetter and W. Dierichs, Chem. Ber., 1952, 85, 1061 CAS.
  32. D. W. Gohen and W. R. Vaughan, Org. Syn. Coll. Vol. 4, 1963, 594 Search PubMed.
  33. T. H. Chan and D. Stossel, J. Org. Chem., 1986, 51, 2423 CrossRef CAS.
  34. A. Burger, L. Turnbull and J. G. Dinwiddie, J. Am. Chem. Soc., 1950, 72, 5512 CrossRef CAS.
  35. A. I. Vogel, Textbook of Practical Organic Chemistry, Longman and Green Pty Ltd., 4th edn., 1978, p. 1103 Search PubMed.
  36. G. Fouquet and M. Schlosser, Angew Chem., Int. Ed. Engl., 1974, 13, 82 CrossRef.
  37. E. J. Eisenbraun, Org. Syn. Coll. Vol. 5, 1973, 310 Search PubMed.
  38. J. H. Babler and B. J. Invergo, J. Org. Chem., 1979, 44, 3723 CrossRef CAS.
  39. A. Padwa, W. F. Rieker and R. J. Rosenthal, J. Org. Chem., 1984, 49, 1353 CrossRef CAS.
  40. E. J. Corey, H. Niwa and J. Knolle, J. Am. Chem. Soc., 1978, 100, 1942 CrossRef CAS.
  41. J. V. Supniewski and P. L. Salzberg, Org. Syn. Coll. Vol. 3, 1955, 851 Search PubMed.
  42. H. J. Barber, J. Chem. Soc., 1943, 79 RSC.
  43. E. Reitz, Org. Syn. Coll. Vol. 3, 1955, 851 Search PubMed.
  44. L. Brandsma and H. D. Verkrnijsse, Synthesis of Ethylenes, Allenes and Cumulenes, Elsevier, New York, 1981, p. 223 Search PubMed.
  45. M. J. S. Dewar, E. G. Zoebisch and E. F. Healy, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef.
  46. W. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986 Search PubMed.
  47. T. A. Halgren and W. N. Lipscomb, Chem. Phys. Lett., 1977, 49, 225 CrossRef CAS.
  48. C. Peng and H. B. Schlegel, Israel J. Chem., 1993, 33, 449 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.