Reactivity in eliminative cleavage of activated four-membered rings. The behaviour of 3-hydroxythietane derivatives

(Note: The full text of this document is currently only available in the PDF Version )

David J. Young and Charles J. M. Stirling


Abstract

3-Hydroxythietane derivatives undergo retro-aldol ring fission in aqueous sodium hydroxide at a rate determined by the substituent (H or Ph) at the 3 position and by the oxidation state of sulfur. Reactions occur between 4 × 104 and 5 × 105 times faster than for the open chain analogues. These rate accelerations correlate with an expression of strain energy between 41% and 33% compared with approximately 26% for alkene-forming eliminations of cyclobutanes. These differences, together with the differences in relative sensitivities to α-phenyl substitution and uniformly positive values of entropies of activation for 3-hydroxythietane derivatives, suggest a greater degree of ring cleavage in the transition structure for thietanes than for cyclobutanes. Ring fission is, however, accompanied by concomitant protonation of the leaving carbon group as evidenced by the isotope discrimination value of 1.7 for reaction of 3e. 3-Hydroxythietane itself does not undergo retro-aldol ring cleavage but rather anionic polymerisation to yield polymer 9a.


References

  1. L. A. Paquette and C. J. M. Stirling, Tetrahedron, 1992, 48, 7383 CrossRef CAS.
  2. P. Kaszynski, A. C. Friedli and J. Michl, J. Am. Chem. Soc., 1992, 114, 601 CrossRef CAS.
  3. M. I. Page, in Enzyme Mechanisms, eds. M. I. Page and A. Williams, Royal Society of Chemistry, Cambridge, 1987 Search PubMed.
  4. (a) C. J. M. Stirling, Tetrahedron, 1985, 41, 1613 CrossRef CAS; (b) S. W. Roberts and C. J. M. Stirling, J. Chem. Soc., Chem. Commun., 1991, 170 RSC; (c) S. Niedoba, S. M. Jeffery and C. J. M. Stirling, J. Chem. Soc., Chem. Commun., 1992, 650 RSC; (d) S. M. Jeffery and C. J. M. Stirling, J. Chem. Soc., Perkin Trans. 2, 1993, 1617 RSC.
  5. M. A. Casadei, C. Galli and L. Mandolini, J. Am. Chem. Soc., 1984, 106, 1051 CrossRef CAS.
  6. (a) F. Benedetti and C. J. M. Stirling, J. Chem. Soc., Chem. Commun., 1983, 1374 RSC; (b) S. M. van der Kerk, J. W. Verhoeven and C. J. M. Stirling, J. Chem. Soc., Perkin Trans. 2, 1985, 1355 RSC.
  7. (a) H. A. Earl and C. J. M. Stirling, J. Chem. Soc., Perkin Trans. 2, 1987, 1273 RSC; (b) A. Bury, H. A. Earl and C. J. M. Stirling, J. Chem. Soc., Perkin Trans. 2, 1987, 1281 RSC.
  8. G. Tonachini, F. Bernardi, H. B. Schlegel and C. J. M. Stirling, J. Chem. Soc., Perkin Trans. 2, 1988, 705 RSC.
  9. B. Lamm and K. Gustafsson, Acta Chem. Scand., Ser. B, 1974, 28, 701 Search PubMed.
  10. F. S. Abbott and K. Haya, Can. J. Chem., 1978, 56, 71 CAS.
  11. W. O. Siegl and C. R. Johnson, J. Org. Chem., 1970, 35, 3657 CrossRef CAS.
  12. D. C. Dittmer and M. E. Christy, J. Am. Chem. Soc., 1962, 84, 399 CrossRef CAS.
  13. J. P. Machon and A. Nicco, Eur. Polym. J., 1971, 7, 353 CrossRef CAS.
  14. There is very little information which deals with this assumption.
  15. Sussex-N.P.L. Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, J. B. Pedley and J. Rylance, University of Sussex Press, 1977.
  16. Quoted by S. Oae and Y. Uchida, in The Chemistry of Sulfoxides and Sulfones, eds. S. Patai, Z. Rappoport and C. J. M. Stirling, Wiley, Chichester, 1988 Search PubMed.
  17. A. Thibblin and W. P. Jencks, J. Am. Chem. Soc., 1979, 101, 4963 CrossRef CAS.
  18. D. C. Dittmer, B. H. Patwardhan and J. T. Bartholomew, Org. Mag. Reson., 1982, 18, 82 Search PubMed.
  19. D. R. Dalton and V. P. Dutta, J. Chem. Soc. (B), 1971, 85 RSC This adsorption was immediately quenched on acidification.
  20. A. C. Cope, P. Kovacic and M. Burg, J. Am. Chem. Soc., 1949, 71, 3658 CrossRef CAS.
  21. E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc., 1965, 87, 1345 CrossRef CAS.
  22. H. D. Becker and G. A. Russell, J. Org. Chem., 1963, 28, 1896.