Electrochemical and spectroscopic properties of a series of tert-butyl-substituted para-extended quinones

(Note: The full text of this document is currently only available in the PDF Version )

Jinkui Zhou and Anton Rieker


Abstract

Six extended para-quinones 1–6 with sterically hindered keto groups have been characterized by UV–VIS, 1H NMR and 13C NMR spectroscopy. Their electrochemical properties were investigated in pyridine solution using cyclic voltammetry, differential pulse voltammetry, chronoamperometry and controlled-potential electrolysis. All species exhibit two successive one-electron reductions leading to the dianions via the monoanions; the dianions can be reoxidized to the quinones. An EE-type mechanism for 1–6 was verified by computer simulation; the standard rate constants (ks1 and ks2 ) of the heterogeneous charge-transfer are in the region of 6.5–12.5 × 10-3 cm s-1. The first reduction peak potentials show a good linear relationship with the calculated LUMO energy levels. The radical anions, prepared electrochemically in the first reduction step, were persistent for several hours in the absence of air. They were also characterized by UV–VIS, EPR and ENDOR spectroscopy revealing that the odd electron is delocalized over the whole π-system.


References

  1. J. Q. Chambers, in The Chemistry of the Quinonoid Compounds, (a) ed. S. Patai, Wiley, London, 1974, p. 737(b) eds., S. Patai and Z. Rappoport, Wiley, Chichester, vol. II, 1988, p. 719 Search PubMed.
  2. D. Voet and J. G. Voet, Biochemistry, Wiley, New York, 1995 Search PubMed.
  3. H. Vogler and M. C. Böhm, Theor. Chim. Acta, 1984, 66, 51 CrossRef CAS.
  4. Mc. R. Maxfield, A. N. Bloch and D. O. Cowan, J. Org. Chem., 1985, 50, 1789 CrossRef CAS.
  5. Y. Yamaguchi and M. Yokoyama, Materials, 1991, 3 Search PubMed.
  6. R. West, J. A. Jorgensen, K. L. Stearly and J. C. Calabrese, J. Chem. Soc., Chem. Commun., 1991, 1234 RSC.
  7. P. Boldt, D. Bruhnke, F. Gerson, M. Scholz, P. G. Jones and F. Bär, Helv. Chim. Acta, 1993, 76, 1739 CrossRef CAS.
  8. J. Schreiber, C. Mottley, B. K. Binha, B. Kalyanaraman and R. P. Mason, J. Am. Chem. Soc., 1987, 109, 348 CrossRef CAS.
  9. (a) T. H. Jozefiak and L. L. Miller, J. Am. Chem. Soc., 1987, 109, 6560 CrossRef CAS; (b) T. H. Jozefiak, J. E. Almlöf, M. W. Feyereisen and L. L. Miller, J. Am. Chem. Soc., 1989, 111, 4105 CrossRef CAS; (c) J. E. Almlöf, M. W. Feyereisen, T. H. Jozefiak and L. L. Miller, J. Am. Chem. Soc., 1990, 112, 1206 CrossRef CAS; (d) S. F. Rak and L. L. Miller, J. Am. Chem. Soc., 1992, 114, 1388 CrossRef CAS.
  10. (a) L. Echeverria, M. Delgado, V. J. Gatto, G. W. Gokel and L. Echegoyen, J. Am. Chem. Soc., 1986, 108, 6825 CrossRef CAS; (b) D. A. Gustowski, M. Delgado, V. J. Gatto, L. Echegoyen and G. W. Gokel, J. Am. Chem. Soc., 1986, 108, 7553 CrossRef CAS; (c) D. A. Gustowski, M. Delgado, V. J. Gatto, L. Echegoyen and G. W. Gokel, Tetrahedron Lett., 1986, 27, 3487 CrossRef CAS; (d) M. Delgado, D. A. Gustowski, H. K. Yoo, V. J. Gatto, G. W. Gokel and L. Echegoyen, J. Am. Chem. Soc., 1988, 110, 119 CrossRef CAS; (e) L. Echegoyen, Y. Hafez, R. C. Lawson, J. de Mendoza and T. Torres, J. Org. Chem., 1993, 58, 2009 CrossRef CAS; (f) L. Echegoyen, R. C. Lawson, C. Lopez, J. de Mendoza, Y. Hafez and T. Torres, J. Org. Chem., 1994, 59, 3814 CrossRef CAS.
  11. H. Bock, P. Dickmann and H.-F. Herrmann, Z. Naturforsch., Teil B, 1991, 46, 326 CAS.
  12. B. Illescas, N. Martin, J. L. Segura, C. Seoane, E. Orti, P. M. Viruela and R. Viruela, J. Org. Chem., 1995, 60, 5643 CrossRef CAS.
  13. J. Petránek, J. Pilař and O. Ryba, Coll. Czech. Chem. Commun., 1970, 35, 2571 CAS.
  14. (a) K. Takahashi and T. Suzuki, J. Am. Chem. Soc., 1989, 111, 5483 CrossRef CAS; (b) K. Takahashi, T. Suzuki, K. Akiyama, Y. Ikegami and Y. Fukazawa, J. Am. Chem. Soc., 1991, 113, 4576 CrossRef CAS.
  15. M. O. F. Goulart and J. H. P. Utley, J. Org. Chem., 1988, 53, 2520 CrossRef CAS.
  16. J. Salbeck, Ph.D. Thesis, University of Regensburg, 1988, p. 200.
  17. K. Ley, E. Müller, R. Mayer and K. Scheffler, Chem. Ber., 1959, 92, 2670.
  18. A. Rieker and H. Kessler, Tetrahedron, 1968, 24, 5133 CrossRef CAS.
  19. E. Müller, H.-D. Spanagel and A. Rieker, Liebigs Ann. Chem., 1965, 681, 141 Search PubMed.
  20. (a) O. Weiss, Ingenieurarbeit, Isny-Tübingen, 1967 Search PubMed; (b) J. Heiss, K.-P. Zeller and A. Rieker, Org. Mass Spectrom., 1969, 2, 1325 CAS; (c) A. Rieker, M. El-Mobayed, A. Neumayer and W. Hiller, to be published; (d) A. Rieker and K. Scheffler, Liebigs Ann. Chem., 1965, 689, 78 Search PubMed; (e) A. Rebmann, J. Zhou, P. Schuler, H. B. Stegmann and A. Rieker, J. Chem. Res., (S), 1996, 318; (M), 1996, 1765 Search PubMed.
  21. P. T. Kissinger and W. R. Heineman, Laboratory techniques in electroanalytical chemistry, Marcel Dekker, New York, 1984, pp. 51–128 Search PubMed.
  22. R. S. Nicholson, Anal. Chem., 1965, 37, 1351 CrossRef.
  23. J. Heinze, Angew. Chem., 1984, 96, 823 CAS.
  24. S. Wawzonek, R. Berkey, E. W. Blaha and M. E. Runner, J. Electrochem. Soc., 1956, 103, 456 CAS.
  25. A. M. Bond, Modern Polarographic Methods in Analytical Chemistry, Marcel Dekker, New York and Basel 1980, pp. 236–270 Search PubMed.
  26. G. C. Barker and A. W. Gardner, At. Energ. Res. Estab. (Brit) AERE Harwell, C/R, 1958, 2297 Search PubMed.
  27. J. E. Mulvaney, R. J. Cramer and H. K. Hall, Jr., J. Polym. Sci., Chem. Ed., 1983, 21, 309 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.