Reactions and lifetime of the 6,6-dimethyl-3-phenylbenzenium ion in aqueous solution. Comparison with the 6-imino-3-phenylbenzenium ion (biphenyl-4-ylnitrenium ion)

(Note: The full text of this document is currently only available in the PDF Version )

Robert A. McClelland, Daniel Ren, Dina Ghobrial and Timothyl A. Gadosy


Abstract

The title cation (1) has been generated from three precursors in aqueous solution containing 20% acetonitrile; in the solvolysis of 6,6-dimethyl-3-phenylcyclohexa-2,4-dien-1-yl acetate (9) and from the isomeric alcohols 4,4-dimethyl-1-phenylcyclohexa-2,5-dien-1-ol (7) and 6,6-dimethyl-3-phenylcyclohexa-2,4-dien-1-ol (8) under acidic conditions. In addition, 8 reacts by way of 1 in weakly acidic solutions containing sodium azide to form an equilibrium mixture with an azide adduct, tentatively assigned as 6-azido-5,5-dimethyl-2-phenylcyclohexa-1,3-diene (12). This experiment provides a novel method for obtaining the kaz∶kw ratio, which with the application of the azide clock method, supplies absolute rate constants. The overall analysis shows that 1 reacts in 20% acetonitrile forming 8 (90%, k = 6.2 × 106 s-1), 7 (8%, k = 5.5 × 105 s-1) plus a small amount of the rearrangement product 3,4-dimethylbiphenyl (10) (2%, k = 1.6 × 105 s-1). The pKR values are -5.3 for 1 ⇌ 8 + H+ and -2.9 for 1 ⇌ 7 + H+, and the equilibrium constant 7 ⇌ 8 is 2.9 × 102. The conjugated alcohol 8 is thus both the kinetic product and the thermodynamic product of the addition of water to 1.These results are compared with ones obtained previously for the biphenyl-4-ylnitrenium ion (2), a cation which can be regarded in terms of carbenium resonance contributors as the 6-imino-3-phenylbenzenium ion. The lifetimes in aqueous solution of the two cations are similar (ca. 150 ns for 1 and 300 ns for 2), as is also the case for the rate constants for addition of water at the carbon that bears the phenyl group, the reaction that results in unconjugated alcohols. The difference is that the kinetic product with 2 is this unconjugated alcohol; an AM1 calculation suggests that the conjugated isomer would be the thermodynamic product, as is the case with 1. It is suggested that the electronegative nitrogen of 2 results in a greater fraction of the positive charge being localized at the remote para carbon, so that is the site where water preferentially reacts.


References

  1. J. A. Miller, Cancer Res., 1970, 30, 559 CAS; 1978, 38, 1479.
  2. E. C. Miller and J. Miller, Cancer, 1981, 47, 2327 CAS; Environ. Health Perspect., 1983, 49, 3 Search PubMed.
  3. F. F. Kadlubar, J. A. Miller and E. C. Miller, Cancer Res., 1977, 37, 805 CAS.
  4. M. Novak and S. A. Kennedy, J. Am. Chem. Soc., 1995, 117, 574 CrossRef CAS.
  5. R. A. McClelland, M. J. Kahley, P. A. Davidse and G. Hadzialic, J. Am. Chem. Soc., 1996, 118, 4794 CrossRef CAS.
  6. M. Novak, M. J. Kahley, E. Eiger, J. S. Helmick and H. E. Peters, J. Am. Chem. Soc., 1993, 115, 9453 CrossRef CAS.
  7. G. Kohnstam, W. A. Petch and D. L. H. Williams, J. Chem. Soc., Perkin Trans. 2, 1984, 423 RSC.
  8. G. J. Kasperek, T. C. Bruice, H. Yagi, N. Kaubisch and D. Jerina, J. Am. Chem. Soc., 1972, 94, 7876 CrossRef.
  9. A. Fischer and J. N. Ramsay, Can. J. Chem., 1974, 52, 3960 CAS.
  10. T. Banwell, C. S. Morse, P. C. Myrhe and A. Vollmar, J. Am. Chem. Soc., 1977, 99, 3042 CrossRef CAS.
  11. H. W. Gibbs, R. B. Moodie and K. Schofield, J. Chem. Soc., Perkin Trans. 2, 1978, 1145 RSC.
  12. J. T. Geppart, M. W. Johnson, P. C. Myrhe and S. P. Woods, J. Am. Chem. Soc., 1981, 103, 2057 CrossRef.
  13. A. Fischer, G. N. Henderson and T. A. Smyth, Can. J. Chem., 1986, 64, 1093 CAS.
  14. A. Thibbiln, J. Org. Chem., 1993, 58, 7427 CrossRef CAS.
  15. H. E. Zimmerman, P. Hackett, D. F. Juers, J. M. McCall and B. Schroder, J. Am. Chem. Soc., 1971, 93, 3653 CrossRef CAS.
  16. C. A. Bunton, M. M. Mhala and J. R. Moffatt, J. Org. Chem., 1984, 49, 3637 CrossRef CAS.
  17. R. A. McClelland, Tetrahedron, 1996, 52, 6823 CrossRef CAS.
  18. J. P. Richard and W. P. Jencks, J. Am. Chem. Soc., 1982, 104, 4689 CrossRef CAS.
  19. J. P. Richard, M. E. Rothenburg and W. P. Jencks, J. Am. Chem. Soc., 1984, 106, 1361 CrossRef CAS.
  20. R. A. McClelland, V. N. Kanagasabapathy, N. Banait and S. Steenken, J. Am. Chem. Soc., 1991, 113, 1009 CrossRef CAS.
  21. N. Mathivanan, R. A. McClelland and S. Steenken, J. Am. Chem. Soc., 1990, 112, 8454 CrossRef CAS.
  22. J. C. Fishbein and R. A. McClelland, Can. J. Chem., 1996, 74, 1321 CAS and references therein.
  23. A. D. Allen, V. M. Kanagasabapathy and T. T. Tidwell, J. Am. Chem. Soc., 1986, 108, 3470 CrossRef CAS.
  24. J. P. Richard, J. Am. Chem. Soc., 1989, 111, 6735 CrossRef CAS.
  25. J. P. Richard, T. L. Amyes, L. Bei and V. Stubblefield, J. Am. Chem. Soc., 1990, 112, 1361.
  26. J. P. Richard, J. Am. Chem. Soc., 1991, 113, 4588 CrossRef CAS.
  27. J. J. P. Stewart, MOPAC 93.00 Manual, Fujitsu Limited, Tokyo, Japan, 1993.
  28. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.