Formation of thioketenes by thermal fragmentation of 1,2-dithiol-3-ones

(Note: The full text of this document is currently only available in the PDF Version )

Tonny Jørgensen, Carl Th. Pedersen, Robert Flammang and Curt Wentrup


Abstract

Thioketenes 6 are formed in a Wolff-type rearrangement together with OCS by flash vacuum thermolysis (FVT) of 1,2-dithiol-3-ones 4 and identified by a combination of Ar matrix isolation FTIR sepctroscopy and collisional activation mass spectrometry (CAMS). The thioketenes all have strong IR absorptions in the 1750 cm-1 region ascribed to the C[double bond, length as m-dash]C[double bond, length as m-dash]S stretching vibration. The matrix IR and the CAMS of thioketenes 6a, 6d and 6e are identical with those of authentic samples generated by FVT of 1,2,3-thiadiazoles 7a, 7d and 2,3-dihydrobenzothiophene-2,3-dione 9, respectively. A competing fragmentation of the dithiolones leads to the corresponding acetylenes. CO and S2 were also identified.


References

  1. G. Seybold and C. Heibl, Angew. Chem., Int. Ed. Engl., 1975, 14, 248 CrossRef; Chem. Ber., 1977, 110, 1225 Search PubMed.
  2. (a) E. Schaumann, Tetrahedron, 1988, 44, 1827 CrossRef CAS; (b) E. Schaumann, in Houben-Weyl, Metoden der Organischen Chemie, ed. D. Klamann, Thieme, Stuttgart, 1985, vol. E11/1, p. 232 Search PubMed.
  3. C. O. Kappe, C. Th. Pedersen, J.-M. Catel and Y. Mollier, J. Chem. Soc., Perkin Trans. 2, 1994, 351 RSC.
  4. (a) M. W. Wong, C. Wentrup and R. Flammang, J. Phys. Chem., 1995, 99, 16 849 CrossRef CAS; (b) C. Th. Pedersen, Tetrahedron Lett., 1996, 32, 4805 CrossRef CAS.
  5. H. Egsgaard and L. Carlsen, J. Chem. Res., 1991, 226 Search PubMed.
  6. Ar matrix FTIR spectra of authentic samples of CO, CS2, phenylacetylene and diphenylacetylene were recorded for comparison.
  7. G. C. Pimentel and S. W. Charles, Pure Appl. Chem., 1963, 7, 111 CAS.
  8. H. Bender, F. Carnovale, J. B. Peel and C. Wentrup, J. Am. Chem. Soc., 1988, 110, 3458 CrossRef CAS; C. Wentrup, S. Fischer, A. Maquestiau and R. Flammang, J. Org. Chem., 1986, 51, 1908 CrossRef CAS.
  9. C. Wentrup, H. Bender and G. Gross, J. Org. Chem., 1987, 52, 3838 CrossRef CAS; C. O. Kappe, M. W. Wong and C. Wentrup, J. Org. Chem., 1995, 60, 1686 CrossRef CAS.
  10. J. Møller and C. Th. Pedersen, Acta Chem. Scand., 1968, 22, 706.
  11. M. Torres, A. Chement, J. E. Bertie, H. E. Gunning and O. P. Strausz, J. Org. Chem., 1978, 43, 2490 CrossRef CAS.
  12. A. Krantz and J. Laureni, J. Am. Chem. Soc., 1981, 103, 486 CrossRef CAS.
  13. C. Wentrup, R. Blanch, H. Briehl and G. Gross, J. Am. Chem. Soc., 1988, 110, 1874 CrossRef CAS.
  14. J. Brown, R. Flammang, Y. Govaert, M. Plisnier, C. Wentrup and Y. Van Haverbeke, Rapid. Commun. Mass Spectrom., 1992, 6, 249 CAS; R. H. Bateman, J. Brown, M. Lefevere, R. Flammang and Y. Van Haverbeke, Int. J. Mass Spectrom. Ion Processes, 1992, 115, 205 CrossRef CAS.
  15. F. Boberg and J. Knoop, Liebigs Ann. Chem., 1967, 708, 148 Search PubMed.
  16. R. Mayer and J. Faust, Chem. Ber., 1963, 96, 2702 CAS.
  17. W. Kirmse and L. Horner, Liebigs Ann Chem., 1958, 614, 4 Search PubMed.
  18. C. D. Hurd and R. I. Mori, J. Am. Chem. Soc., 1955, 77, 5359 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.