Oxygen activation by metal complexes and alkyl hydroperoxides. Applications of mechanistic probes to explore the role of alkoxyl radicals in alkane functionalization

(Note: The full text of this document is currently only available in the PDF Version )

Philip A. MacFaul, Isabella W. C. E. Arends, Keith U. Ingold and Danial D. M. Wayner


Abstract

The mechanism of the oxidation of cycloalkanes by tertiary alkyl hydroperoxides catalysed by iron(III) dichlorotris(2-pyridylmethyl)amine [FeIIICl2(TPA)]+ and by the acetate bridged (µ-oxo) di-iron complex [Fe2III(TPA)2O(OAc)]3+ has been investigated. Product studies do not support oxidation via a high valent iron–oxo intermediate (formally FeV[double bond, length as m-dash]O), but are consistent with a mechanism involving hydrogen atom abstraction from the alkane by alkoxyl radicals derived from the hydroperoxide. In the presence of a large excess of tert-butyl hydroperoxide, the oxidation of cyclohexane yields cyclohexanone, cyclohexanol and tert-butylcyclohexyl peroxide in more than stoichiometric amounts and, in the case of the mono-iron catalyst, one equivalent of cyclohexyl chloride. Replacement of Me3COOH by hydroperoxides, which could yield tert-alkoxyl radicals having much shorter lifetimes than the tert-butoxyl radical prevents oxidation of the cycloalkane. The products obtained with these hydroperoxide mechanistic probes are those derived from the fast unimolecular reactions (generally β-scissions) of the corresponding alkoxyl radicals. The inapplicability of dimethyl sulfide as a mechanistically diagnostic trap for the putative FeV[double bond, length as m-dash]O intermediate and the value of di-tert-butyl hyponitrite as a non-iron-based source of tert-butoxyl radicals are discussed.


References

  1. Reviews: (a) R. H. Holm, Chem. Rev., 1987, 87, 1401 CrossRef CAS; (b) R. S. Drago, Coord. Chem. Rev., 1992, 117, 185 CrossRef CAS; (c) A. L. Feig and S. J. Lippard, Chem. Rev., 1994, 94, 759 CrossRef CASmonographs (d) R. A. Sheldon and J. K. Kochi, Metal-Catalyzed Oxidations of Organic Compounds, Academic Press, New York, 1981 Search PubMed; (e) Activation and Functionalization of Alkanes, ed. C. L. Hill, Wiley, New York, 1989 Search PubMed; (f) The Activation of Dioxygen and Homogeneous Catalytic Oxidation, eds. D. H. R. Barton, A. E. Martell and D. T. Sawyer, Plenum Press, New York, 1993 Search PubMed.
  2. Cytochrome P-450: Structure, Mechanism and Biochemistry, ed. P. R. Ortiz de Montellano, Plenum Press, New York, 1986 Search PubMed.
  3. Reviews: J. D. Lipscomb, Ann. Rev. Microbiol., 1994, 48, 371 Search PubMed; A. C. Rosenzweig and S. J. Lippard, Acc. Chem. Res., 1994, 27, 229 Search PubMed; A. C. Rosenzweig, P. O. Nordlund, P. M. Takahara, C. A. Frederick and S. J. Lippard, Chemistry & Biology, 1995, 2, 409 CrossRef CAS.
  4. A few workers have instead relied on the spontaneous formation of iron-containing catalytic structures using inorganic iron and multi-component solvent mixtures, see, e.g. D. H. R. Barton and D. Doller, Acc. Chem. Res., 1992, 25, 504 Search PubMed.
  5. Peroxidases in Chemistry and Biology, eds. J. Everse, K. E. Everse and M. B. Grisham, CRC Press, Boca Raton, FL, 1991, vol. 2 Search PubMed.
  6. G. R. Schonbaum and B. Chance, in The Enzymes, ed. P. D. Boyer, Academic Press, New York, 2nd edn., 1976, vol. 13, pp. 363–408 Search PubMed.
  7. B. Meunier, Chem. Rev., 1992, 92, 1411 CrossRef CAS.
  8. R. J. Guajardo, S. E. Hudson, S. J. Brown and P. K. Mascharak, J. Am. Chem. Soc., 1993, 115, 7971 CrossRef CAS; R. J. Guajardo, F. Chavez, E. T. Farinas and P. K. Mascharak, J. Am. Chem. Soc., 1995, 117, 3883 CrossRef CAS; K. E. Loeb, J. M. Zaleski, T. E. Westre, R. J. Guajardo, P. K. Mascharak, B. Hedman, K. O. Hodgson and E. I. Solomon, J. Am. Chem. Soc., 1995, 117, 4545 CrossRef CAS; R. J. Guajardo and P. K. Mascharak, Inorg. Chem., 1995, 34, 802 CrossRef CAS.
  9. T. C. Bruice, Acc. Chem. Res., 1991, 24, 243 CrossRef CAS.
  10. (a) R. Labeque and L. J. Marnett, Biochemistry, 1988, 27, 7060 CrossRef CAS; (b) J. R. Lindsay Smith, P. N. Balasubramanian and T. C. Bruice, J. Am. Chem. Soc., 1988, 110, 7411 CrossRef; (c) J. R. Lindsay Smith and R. J. Lower, J. Chem. Soc., Perkin Trans. 2, 1991, 31 RSC; (d) E. Gospinath and T. C. Bruice, J. Am. Chem. Soc., 1991, 113, 6090 CrossRef CASthe same is true for FeIII bleomycin, see: (e) G. Padbury, S. G. Sligar, R. Labeque and L. J. Marnett, Biochemistry, 1988, 27, 7846 CrossRef CAS; (f) A. Natrajan, S. M. Hecht, G. A. van der Marel and J. H. van Boom, J. Am. Chem. Soc., 1990, 112, 4532 CrossRef CAS; Ö. Almarsson and T. C. Bruice, J. Am. Chem. Soc., 1995, 117, 4533 CrossRef CAS.
  11. (a) R. A. Leising, R. E. Norman and L. Que, Jr., Inorg. Chem., 1990, 29, 2553 CrossRef CAS; (b) R. A. Leising, Y. Zang and L. Que, Jr., J. Am. Chem. Soc., 1991, 113, 8555 CrossRef CAS; (c) T. Kojima, R. A. Leising, S. Yan and L. Que, Jr., J. Am. Chem. Soc., 1993, 115, 11 328 CrossRef CAS; (d) R. A. Leising, J. Kim, M. A. Pérez and L. Que, Jr., J. Am. Chem. Soc., 1993, 115, 9524 CrossRef CAS; (e) J. Kim, R. G. Harrison, C. Kim and L. Que, Jr., J. Am. Chem. Soc., 1996, 118, 4373 CrossRef CAS; (f) a new catalyst described in ref. 11e oxidizes c-C6H12 with a selectivity for alcohol which increases as the [Me3COOH]∶[Fe2O(TPA)2(H2O)2]4+ ratio decreases, only alcohol being detected when this ratio was reduced to 10∶1 and the hydroperoxide was delivered slowly by a syringe pump. Under these last conditions a competition of c-C6H12 and c-C6D12 gave a c-C6H11OH∶c-C6D11OH ratio corresponding to a substrate isotope effect, kH/kD= 10, which is about twice the isotope effect found with the ‘usual’ peroxide : catalyst ratio of ca. 150∶1. It was suggested 11e that the selective formation of alcohol and the high isotope effect involved hydrogen abstraction by an FeIIIOOBut species followed by a Groves-type12 of oxygen rebound. Since we have not yet examined this particular catalyst we must reserve judgement on its properties and on the mechanistic conclusions drawn by Que and coworkers.11e.
  12. J. T. Groves, G. A. McClusky, R. E. White and M. J. Coon, Biochem. Biophys. Res. Commun., 1978, 81, 154 CrossRef CAS.
  13. G. A. Russell, J. Am. Chem. Soc., 1957, 79, 3871 CrossRef.
  14. See, e.g. P. D. Bartlett and G. Guaraldi, J. Am. Chem. Soc., 1967, 89, 4799 Search PubMed.
  15. 10-Hydroperoxyoctadeca-8,12-dienoic acid has previously been employed as a mechanistic probe in systems of biochemical interest.10a,e,f.
  16. Based on the ratio of the rate constants for H-atom abstraction from cyclopentane, kH, to β-scission, k14, using PhCH2CMe2O radicals generated from the hyponitrite at 40 °C, viz.,17kH/k14= 0.004 M–1 and an LFP measured value for kH= 8.8 × 105 M–1 s–1 for H-atom abstraction from cyclopentane by Me3O radicals at room temperature.18 A 266 nm LFP experiment with MPPH in CH3CN showed ‘instantaneous’ formation of the benzyl radical, which confirms that reaction (14) is very fast, i.e. k14≥ 2 × 107 s–1.
  17. C. Walling and J. A. McGuiness, J. Am. Chem. Soc., 1969, 91, 2053 CrossRef CAS.
  18. H. Paul, R. D. Small, Jr. and J. C. Scaiano, J. Am. Chem. Soc., 1978, 100, 4520 CrossRef CAS.
  19. I. W. C. E. Arends, K. U. Ingold and D. D. M. Wayner, J. Am. Chem. Soc., 1995, 117, 4710 CrossRef CAS.
  20. We thank Professor D. H. R. Barton for this suggestion.
  21. We consider it extremely probable that variable initiation rates are a feature of the different catalysts employed by Que and co-workers11 and that this factor is, at least in part, responsible for the (rather minor) differences in product ratios found after reaction for specific lengths of time with different catalysts.
  22. The initial sole source of O2 is, of course, the Me3CO radicalinduced chain decomposition of Me3COOH.23.
  23. (a) R. Hiatt, J. Clipsham and T. Visser, Can. J. Chem., 1964, 42, 2754 CAS; (b) A. Factor, C. A. Russell and T. G. Traylor, J. Am. Chem. Soc., 1965, 87, 3692 CrossRef CAS; (c) J. R. Thomas, J. Am. Chem. Soc., 1965, 87, 3935 CrossRef CAS; (d) J. A. Howard and K. U. Ingold, Can. J. Chem., 1969, 47, 3797 CAS.
  24. Professor Cheves Walling has suggested to us that another potential source of ketone is the reaction of the secondary hydroperoxide (formed in the exchange reaction: c-CnH2n–1OO+ Me3COOH â†� c-CnH2n–1OOH + Me3COO) with the iron(III) catalyst to form an alkylperoxyl iron(III) complex which decomposes to yield ketone: c-CnH2n–1OO(FeIII)→ c-CnH2n–2O + HO(FeIII). Analogous reactions had previously been suggested for secondary alkyl peroxy-iron(III) porphyrin complexes, see: R. D. Arasingham, A. L. Balch, C. R. Cornman and L. Latos-Grazynski, J. Am. Chem. Soc., 1989, 111, 4357 Search PubMed.
  25. C. Walling, Acc. Chem. Res., 1975, 8, 125 CrossRef CAS.
  26. See ref. 22, in ref. 19.
  27. D. V. Avila, C. E. Brown, K. U. Ingold and J. Lusztyk, J. Am. Chem. Soc., 1993, 115, 466 CrossRef CAS.
  28. In this connection, the time course of product formation for 1 h in the reaction of cyclohexane (0.77 M), Me3COOH (0.10 M), [Fe2III-(TPA)2O(O2CC6H4OMe)](ClO4)3 in CH3CN under argon has been reported.11d After a short induction period the alcohol, ketone and mixed peroxide had grown to ca. 6, 8 and 10 equiv., respectively, at 30 min, and then to ca. 10, 11 and 19 equiv. respectively, after 45 min.
  29. Measured (by Dr P. Mulder) by monitoring the growth of phenoxyl radical following laser flash photolysis of Me3COOCMe3 and BHT in MeCN.
  30. We assume that Me3CO and PhCMe2O abstract hydrogen from cyclohexane at essentially the same rate.
  31. R. Labeque and L. J. Marnett, J. Am. Chem. Soc., 1989, 111, 6621 CrossRef CAS.
  32. The 18O content of the other oxygenated products (GC–MS) were c-C8H15OH (0.16 equiv. > 75%18O), c-C8H14O (3.0 equiv., 79%18O). In a similar experiment in which the products were analysed after 24 h of reaction the products were c-C8H15Cl (< 0.1 equiv.), c-C8H15OH (4.8 equiv. 33%18O), c-C8H14O (19 equiv., 18%18O) and c-C8H15OOCMe3(0.09 equiv., 18O content was not determined).
  33. H. Kiefer and T. G. Traylor, Tetrahedron Lett., 1966, 6163 CrossRef CAS.
  34. Kochi 35a was attempting to define a unified mechanism ‘applicable to all reactions of peroxides with copper salts’.35b However, (tertiary) alkyl hydroperoxides are unique in that only they give rise to mixed peroxides. To explain this fact Kochi assumed a facile ligand exchange: CuIIOH + Me3COOH â†� CuIIOOCMe3+ H2O, followed by reaction (22).
  35. (a) J. K. Kochi, Tetrahedron, 1962, 18, 483 CrossRef CAS; (b) J. K. Kochi and H. E. Mains, J. Org. Chem., 1965, 30, 1862 CAS In much later work, Kochi apparently abandoned the idea that mixed peroxides were formed via ligand transfer and favoured, instead, R+ Me3COO coupling, cf. reaction (28), vide infra, see: K. Srinavasan, S. Perrier and J. K. Kochi, J. Mol. Catal., 1986, 38, 297 Search PubMed.
  36. M. S. Kharasch and A. Fono, J. Org. Chem., 1958, 23, 324; M. S. Kharasch and A. Fono, J. Org. Chem., 1959, 24, 72 CrossRef CAS.
  37. See e.g. D. H. R. Barton and D. R. Hill, Tetrahedron Lett., 1994, 35, 1431 Search PubMed; D. H. R. Barton and T.-L. Wang, Tetrahedron, 1995, 50, 1011 CrossRef CAS.
  38. (a) F. Minisci, F. Fontana, S. Areneo, F. Recupero, S. Banfi and S. Quici, J. Am. Chem. Soc., 1995, 117, 226 CrossRef CASThis paper provides some very interesting new insights into the Kharasch36 synthesis of mixed peroxides; (b) F. Minisci, F. Fontana, S. Araneo and F. Recupero, J. Chem. Soc., Chem. Commun., 1994, 1823 RSC; (c) F. Minisci, F. Fontana, S. Araneo, F. Recupero and L. Zhao, Synlett, 1996, 2, 119 CrossRef.
  39. M. S. Kharasch, A. Fono and W. Nudenberg, J. Org. Chem., 1950, 15, 753 CrossRef CAS.
  40. This hydroperoxide was synthesized from 2-(2′-methylphenyl)-propan-2-ol, itself prepared by reaction of ortho-methylaceto-phenone with methyl magnesium iodide. The tertiary alcohol {mass spectrum m/z(%): 150 (1), 135 (22), 132 (17), 117 (9), 117 (7), 105 (2), 91 (14), 77 (4), 65 (8), 43 (100); δH(200 Mz, CDCl3) 1.65 [6 H, s, C(CH3)2], 1.72 (1 H, s, OH), 2.58 (3 H, s, ArCH3), 7.18 (m) and 7.45 (m, 4 H, aromatic)} was converted to the hydroperoxide, o-MCH, with 70% H2O2 at 60 °C following a literature procedure (A. G. Davies, R. V. Foster and A. M. White, J. Chem. Soc., 1953, 1541: o-MCH: δH(200 MHz, CDCl3) 1.69 [6 H, s, C(CH3)2], 2.58 (3 H, s, ArCH3), 7.17 (m) and 7.35 (m, 4 H, aromatic), 8.7 (1 H, s, OHSearch PubMed.
  41. D. V. Avila, K. U. Ingold, A. A. Di Nardo, F. Zerbetto, M. Z. Zgierski and J. Lusztyk, J. Am. Chem. Soc., 1995, 117, 2711 CrossRef CAS.
  42. D. V. Avila, K. U. Ingold, J. Lusztyk, W. H. Green and D. R. Procopio, J. Am. Chem. Soc., 1995, 117, 2929 CrossRef CAS.
  43. M. Simic and E. Hayon, J. Phys. Chem., 1971, 75, 1677 CrossRef.
  44. (a) J. A. Howard, K. Adamic and K. U. Ingold, Can. J. Chem., 1969, 27, 3793; (b) K. Adamic, J. A. Howard and K. U. Ingold, Can. J. Chem., 1969, 27, 3803.
  45. D. Griller and K. U. Ingold, Acc. Chem. Res., 1976, 9, 13 CrossRef CAS.
  46. We prefer this much more descriptive phrase (first suggested by Daikh and Finke)47 to Fisher's ‘internal suppression of fast reactions’.48 The Daikh and Finke47 work provides an extremely dramatic example (105∶1) of product selectivity due to the persistent radical effect.
  47. B. E. Daikh and R. G. Finke, J. Am. Chem. Soc., 1992, 114, 2938 CrossRef CAS.
  48. H. Fischer, J. Am. Chem. Soc., 1986, 108, 3925 CrossRef see ref. 7 cited therein.
  49. Some ketone may also be formed via the reactions shown in ref. 24 and via the reaction c-C6H11OO+ Me3COO→c-C6H10O + O2+ Me3COH.
  50. L. Bateman and K. R. Hargrave, Proc. R. Soc. London, A, 1954, 224, 399 Search PubMed.
  51. D. W. Snelgrove, P. A. MacFaul, K. U. Ingold and D. D. M. Wayner, Tetrahedron Lett., 1996, 37, 823 CrossRef CAS.
  52. D. H. R. Barton and W. Chavasiri, Tetrahedron, 1994, 50, 19 CrossRef CAS.
  53. We note that Fontecave and co-workers54 have carried out very similar, though less detailed, studies to those of Que using µ-oxo bridged diferric complexes to oxidize cyclohexane with Me3COOH in CH3CN at room temperature. Not surprisingly, they observed the same products and, once again, the yields of alcohol and ketone were roughly equal. Our conclusions regarding the mechanism of iron–TPA catalysed alkane oxidations necessarily, therefore, also apply to Fontecave's chemistry.54.
  54. J. M. Vincent, S. Ménage, C. Lambreaux and M. Fontecave, Tetrahedron Lett., 1994, 35, 6287 CrossRef CAS.
  55. In other systems there can be little doubt that chemically active, high valent iron-oxo species and/or hydroperoxyl iron species can be formed from molecular oxygen,7e.g. cytochrome P450,2,56 cytochrome bo,57 iron bleomycin,58 iron complexes structurally related to bleomycin,8 and even ferrous halides.59 There is also abundant evidence for the existence of alkylperoxyl60 and hydroperoxyl8,56–58,61 iron complexes. However, although claims that relatively simple chemical systems containing iron and hydrogen peroxide oxidize alkanes and other substrates via high valent, iron-oxo species (or hydroperoxyl iron species) are common62 we, and many others,63 consider most of these claims to be of dubious validity. As is illustrated in the present work we, and others, are also sceptical about similar claims for iron–alkyl hydroperoxide7,63,65 and iron–oxygen66 systems. Perhaps fortunately for their proponents such suggestions are easier to make than to prove or disprove. A recent publication67 very clearly demonstrates that DNA strand scission by reaction of FeII with H2O2 involves HO radicals rather than some high valent, iron-oxo species as had been claimed by many other (but not all other) research groups. This paper67 illustrates the exemplary care required to avoid irrelevant, artifactual chemistry which can so easily ‘disguise’ HO chemistry in iron–H2O2 systems.
  56. K. Kobayashi, T. Iwamoto and K. Honda, Biochem. Biophys. Res. Comm., 1994, 201, 1348 CrossRef CAS.
  57. S. Hirota, T. Mogi, T. Ogura, T. Hirano, Y. Anraku and T. Kitagawa, FEBS Lett., 1994, 352, 67 CrossRef CAS.
  58. J. W. Sam, X.-J. Tang and J. Peisach, J. Am. Chem. Soc., 1994, 116, 5250 CrossRef CAS; R. M. Burger, G. Tian and K. Drlica, J. Am. Chem. Soc., 1995, 117, 1167 CrossRef CAS; T. E. Westre, K. E. Loeb, J. M. Zaleski, B. Hedman, K. O. Hodgson and E. I. Solomon, J. Am. Chem. Soc., 1995, 117, 1309 CrossRef CAS; J. M. Pratt, I. Ridd and L. J. King, J. Chem. Soc., Chem. Commun., 1995, 2297 RSC.
  59. G. H. Posner, J. N. Cumming, P. Ploypradith and C. H. Oh, J. Am. Chem. Soc., 1995, 117, 5885 CrossRef.
  60. (a) Y. Zang, T. E. Elgren, Y. Dong and L. Que, Jr., J. Am. Chem. Soc., 1993, 115, 811 CrossRef CAS; (b) S. Ménage, M. Fontecave, E. C. Wilkinson and L. Que, Jr., Angew. Chem., Int. Ed. Engl., 1995, 34, 203 CrossRef CAS; (c) J. Kim, E. Larka, E. C. Wilkinson and L. Que, Jr., Angew. Chem., Int. Ed. Engl., 1995, 34, 2048 CrossRef CAS.
  61. M. Lubben, A. Meetsam, E. C. Wilkinson, B. Feringa and L. Que, Jr., Angew. Chem., Int. Ed. Engl., 1995, 34, 1512 CrossRef CAS.
  62. See ref. 4 and e.g. C. Sheu, S. A. Richert, P. Cofré, B. Ross, Jr., A. Sobkowiak, D. T. Sawyer and J. R. Kanofsky, J. Am. Chem. Soc., 1990, 112, 1936 Search PubMed; D. A. Wink, R. W. Nims, M. F. Desrosiers, P. C. Ford and L. K. Keefer, Chem. Res. Toxicol., 1991, 4, 510 CrossRef CAS; D. T. Sawyer, C. Kang, A. Llobet and C. Redman, J. Am. Chem. Soc., 1993, 115, 5817 CrossRef CAS; D. H. R. Barton and D. R. Hill, Tetrahedron Lett., 1994, 35, 1431 CrossRef CAS; J. P. Hage and D. T. Sawyer, J. Am. Chem. Soc., 1995, 117, 5617 CrossRef CAS.
  63. See e.g. C. Knight and M. J. Perkins, J. Chem. Soc., Chem. Commun., 1991, 925 Search PubMed; F. Minisci and F. Fontana, Tetrahedron Lett., 1994, 35, 1427 RSC; F. Minisci, F. Fontana, S. Araneo and F. Recupero, Tetrahedron Lett., 1994, 35, 3759 CrossRef CAS; F. Minisci, F. Fontana, L. Zhao, S. Banfi and S. Quici, Tetrahedron Lett., 1994, 35, 8033 CrossRef CAS.
  64. A. Rabion, S. Chen, J. Wang, R. M. Buchanan, J.-L. Seris and R. H. Fish, J. Am. Chem. Soc., 1995, 117, 12 356 CrossRef CAS.
  65. Even some of those workers who favour FeIIIOOR heterolysis to give a reactive, high valent iron-oxo species [reaction (18)] have uncovered disturbing results with ‘probe’ hydroperoxides, including MPPH, which point strongly to homolysis [reaction (19)], see T. G. Traylor, C. Kim, J. L. Richards, F. Xu and C. L. Perrin, J. Am. Chem. Soc., 1995, 117, 3468 Search PubMed.
  66. M. W. Grinstaff, M. G. Hill, J. A. Labinger and H. B. Gray, Science, 1994, 264, 1311 CAS.
  67. W. K. Pogozelski, T. J. McNeese and T. D. Tullius, J. Am. Chem. Soc., 1995, 117, 6428 CrossRef CAS.
  68. M. Foti, K. U. Ingold and J. Lusztyk, J. Am. Chem. Soc., 1994, 116, 9440 CrossRef CAS.
  69. N. Colclough and J. R. Lindsay Smith, J. Chem. Soc., Perkin Trans. 2, 1994, 1139 RSC.
  70. R. E. Norman, S. Yan, L. Que, G. Backes, J. Ling, J. Sanders-Loehr, J. H. Zheng and C. J. O'Connor, J. Am. Chem. Soc., 1990, 112, 1554 CrossRef CAS.
  71. G. D. Mendenhall, Tetrahedron Lett., 1983, 24, 451 CrossRef CAS.
  72. Footnote 16 in ref. 19.
  73. P. G. Cookson, A. G. Davies and B. P. Roberts, J. Chem. Soc., Chem. Commun., 1976, 1022 RSC.
  74. See e.g. J. C. Scaiano, J. Am. Chem. Soc., 1980, 102, 7747 Search PubMed; C. Chatgilialoglu, K. U. Ingold and J. C. Scaiano, J. Am. Chem. Soc., 1981, 103, 7739 CrossRef CAS; S. Kazanis, A. Azarani and L. J. Johnston, J. Phys. Chem., 1991, 95, 4430 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.