Effects of α-amino acids and small peptides on the rate of an SN1 acetal hydrolysis reaction in aqueous solution: the interplay of hydrophobic and hydrophilic solute hydration

(Note: The full text of this document is currently only available in the PDF Version )

Lisette Streefland, Michael J. Blandamer and Jan B. F. N. Engberts


Abstract

The effects of small amounts of anionic α-amino acids and several small peptides on the kinetics of the SN1 hydrolysis of 2-(4-nitrophenoxy)tetrahydropyran have been investigated at pH 11 and 40 °C. The rate-retarding effect at 1 molal of cosolute is plotted as ln (km = 1/km = 0) versus the number of CH groups in the amino acid side chain. Linear correlations are observed for small α-amino acids from Gly up to Pro. Additivity is also obtained for longer alkyl chains with n(CH) > 6, but these retarding effects of the CH groups are larger and comparable to the CH group contribution obtained for short-chain primary alcohols. The kinetic effects of isomeric aliphatic α-amino acids with linear and branched side chains are compared and show non-additivity. The results are interpreted in terms of the hydrophobicity of CH groups inside and outside the hydrophilic hydration spheres of the polar groups of the α-amino acid. Amino acids with aromatic side chains do not fit in the additivity pattern, probably due to their more pronounced hydrophobicity.Kinetic data for two isomeric dipeptides, Gly-Val and Val-Gly, are also rationalised in terms of intramolecular hydration shell overlap and show the interplay of hydrophobic and electrostatic interactions. The effects of glycine oligomers, (Gly)n (n = 2, 3, 4), reveal the complexity of the hydration of multi-functional molecules. The results are relevant in the context of understanding molecular recognition processes involving enzymes and proteins in aqueous solution.


References

  1. T. H. Lilley, in Water Science Reviews 5, ed. F. Franks, Cambridge University Press, Cambridge, 1990 Search PubMed.
  2. W. Kauzman, Adv. Protein Chem., 1959, 14, 1 Search PubMed.
  3. K. A. Dill, Biochemistry, 1990, 29, 7133 CrossRef CAS.
  4. G. I. Makhatadze and P. L. Privalov, Adv. Protein Chem., 1995, 47, 307 Search PubMed.
  5. P. L. Privalov, J. Mol. Biol., 1996, 258, 707 CrossRef CAS.
  6. W. Blokzijl and J. B. F. N. Engberts, Angew. Chem., Int. Ed. Engl., 1993, 32, 1545 CrossRef.
  7. (a) A. Ben-Naim, J. Chem. Phys., 1989, 90, 7412 CrossRef CAS; (b) A. Ben-Naim, J. Phys. Chem., 1990, 94, 6893 CrossRef CAS.
  8. Y. Nozaki and C. Tanford, J. Biol. Chem., 1971, 246, 2211 CAS.
  9. N. E. Tayar, R. S. Tsai, P.-A. Carrupt and B. Testa, J. Chem. Soc., Perkin Trans. 2, 1992, 79 RSC.
  10. M. Akamatsu, T. Ueno and T. Fujita, ACS Symposium Series, 1995, 606, 229 CAS.
  11. S. Miyagishi, T. Asakawi and M. Nishida, J. Colloid Interface Sci., 1989, 131, 68 CrossRef CAS.
  12. M. Charton, Prog. Phys. Org. Chem., 1990, 18, 163 Search PubMed.
  13. J. L. Cornette, K. B. Cease, H. Margalit, J. L. Spouge, J. A. Berzofsky and C. Delisi, J. Mol. Biol., 1987, 195, 659 CAS.
  14. C.-C. Chen, Y. Zhu, J. A. King and L. B. Evans, Biopolymers, 1992, 32, 1375 CrossRef CAS.
  15. L. Streefland, M. J. Blandamer and J. B. F. N. Engberts, J. Phys. Chem., 1995, 99, 5769 CrossRef CAS.
  16. L. Streefland, M. J. Blandamer and J. B. F. N. Engberts, J. Am. Chem. Soc., 1996, 118, 9539 CrossRef CAS.
  17. T. H. Fife and L. K. Jao, J. Am. Chem. Soc., 1968, 90, 4081 CrossRef CAS.
  18. T. H. Fife and L. K. Jao, J. Am. Chem. Soc., 1970, 92, 1681 CrossRef CAS.
  19. G. A. Craze and A. J. Kirby, J. Chem. Soc., Perkin Trans. 2, 1978, 354 RSC.
  20. W. Blokzijl, J. Jager, J. B. F. N. Engberts and M. J. Blandamer, J. Am. Chem. Soc., 1986, 108, 6411 CrossRef CAS.
  21. W. Blokzijl, J. B. F. N. Engberts, J. Jager and M. J. Blandamer, J. Phys. Chem., 1987, 91, 6022 CrossRef CAS.
  22. W. Blokzijl, J. B. F. N. Engberts and M. J. Blandamer, J. Am. Chem. Soc., 1990, 112, 1197 CrossRef CAS.
  23. J. J. Savage and R. H. Wood, J. Solution Chem., 1976, 5, 733 CrossRef CAS.
  24. (a) W. Karzijn and J. B. F. N. Engberts, Tetrahedron Lett., 1978, 1787 CrossRef CAS; (b) H. J. Mooij, J. B. F. N. Engberts and M. Charton, Recl. Trav. Chim. Pays-Bas, 1988, 107, 185 CAS.
  25. Even this larger CH group contribution [at n(CH) > 6] to the solvent effect is probably still a ‘masked’ contribution; from Fig. 2 it can be observed that the perfect additivity of the CH group in alcohols holds up to n(CH)= 7 and that for n(CH)= 9 a definite deviation from additivity develops.
  26. W. Noordman, W. Blokzijl, J. B. F. N. Engberts and M. J. Blandamer, J. Org. Chem., 1993, 58, 7111 CrossRef CAS.
  27. P. Hol, L. Streefland, M. J. Blandamer and J. B. F. N. Engberts, J. Chem. Soc., Perkin Trans. 2, 1997, 485 RSC.
  28. J. Apperloo, M. J. Blandamer and J. B. F. N. Engberts, unpublished results.
  29. T. V. Chalikian, A. P. Sarvazyan and K. J. Breslauer, J. Phys. Chem., 1993, 97, 13 017 CrossRef CAS.
  30. O. V. Kulikow, A. Zielenkiewicz, W. Zielenkiewicz, V. G. Badelin and G. A. Krestow, J. Solution Chem., 1993, 22, 59 CrossRef.
  31. P. Gianni and L. Lepori, J. Solution Chem., 1996, 25, 1 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.