Stacking and mobility of cationic amphiphiles in the complex with DNA and DNA transfection activity of the complex

(Note: The full text of this document is currently only available in the PDF Version )

Tetsuyuki Akao and Akio Ito


Abstract

Cationic amphiphiles, which have a quaternary ammonium head, hydrocarbon tails and a glutamic acid connector with methylene and/or phenylene spacer, have been used to deliver DNA into eukaryotic cells. The relationship between the mobility of various synthetic cationic amphiphiles complexed with DNA and their DNA transfer activities has been examined. When plasmid DNA was added to liposomes formed with cationic amphiphiles and treated with DNase I, DNA was found to be completely resistant to digestion suggesting that DNA is enclosed in the liposomal vesicle formed by the amphiphiles. CD spectra due to a chiral phenylene chromophore of the amphiphiles showed that the amphiphile–DNA complexes with higher transfection activity exhibited disordering of stacking of the amphiphiles by formation of the complex at the culture temperature. Study of the NMR signal of protons in the methylene and terminal methyl groups of the hydrocarbon chain of the amphiphiles indicates that the mobility of the chain was restricted by the binding of the cationic headgroup to DNA at lower than the phase transition temperature of the amphiphiles. Based on these results and those on the gene transfer activity of the complexes, we discuss the relationship between the amphiphile–DNA interaction in the complex and the gene transfection activity of the complex, and conclude that the most important requirement for efficient gene transfection is that amphiphiles in the complex are in a fluid bilayer at the culture temperature of the cells.


References

  1. T. Kunitake and Y. Okahata, J. Am. Chem. Soc., 1977, 99, 3860 CrossRef CAS.
  2. T. Kunitake, R. Ando and Y. Ishikawa, Memoirs of the Faculty of Engineering, Kyushu University, 1986, 46, 221 Search PubMed.
  3. P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G. M. Ringold and M. Danielsen, Proc. Natl. Acad. Sci. USA, 1987, 84, 7413; P. L. Felgner and G. M. Ringold, Nature, 1989, 337, 387 CrossRef.
  4. P. Pinnaduwage, L. Schmitt and L. Huang, Biochim. Biophys. Acta, 1989, 985, 33 CAS; X. Gao and L. Huang, Biochem. Biophys. Res. Commun., 1991, 179, 280 CrossRef CAS.
  5. A. Ito, R. Miyazoe, J. Mitoma, T. Akao, T. Osaki and T. Kunitake, Biochem. Int., 1990, 22, 235 Search PubMed; T. Akao, T. Osaki, J. Mitoma, A. Ito and T. Kunitake, Bull. Chem. Soc. Jpn., 1991, 64, 3677 CAS; T. Akao, T. Osaki, J. Mitoma, A. Ito and T. Kunitake, Chem. Lett., 1991, 311 CAS.
  6. T. Akao, T. Nakayama, K. Takeshita and A. Ito, Biochem. Mol. Biol. Int., 1994, 34, 915 Search PubMed.
  7. H. Gershon, R. Ghirlando, S. B. Guttman and A. Minskey, Biochemistry, 1993, 32, 7143 CrossRef CAS.
  8. B. Sternberg, F. I. Sorgi and L. Huang, FEBS Lett., 1994, 356, 361 CrossRef CAS.
  9. T. Kunitake, N. Nakashima, M. Shimomura, Y. Okahata, K. Kano and T. Ogawa, J. Am. Chem. Soc., 1980, 102, 6642 CrossRef CAS; N. Nakashima, K. Morimitsu and T. Kunitake, Bull. Chem. Soc. Jpn., 1984, 57, 3253 CAS.
  10. T. Edlund, M. D. Walker, P. J. Barr and W. J. Rutter, Science, 1985, 230, 912 CAS.
  11. T. Akao, T. Fukumoto, H. Ihara and A. Ito, FEBS Lett., 1996, 391, 215 CrossRef CAS.
  12. D. L. Reimer, Y.-P. Zuang, S. Kong, J. J. Wheeler, R. W. Graham and M. B. Bally, Biochemistry, 1995, 34, 12877 CrossRef CAS.
  13. C. Huang and J. T. Mason, Proc. Natl. Acad. Sci. USA, 1978, 75, 308 CAS.
  14. V. I. Ivanov, L. E. Minchenkova, A. K. Schyolkina and A. I. Poletayev, Biopolymers, 1973, 12, 89 CAS.
  15. V. A. Bloomfield, Biopolymers, 1991, 31, 1471 CAS.
  16. T. Nagamura, S. Mihara, Y. Okahata, T. Kunitake and T. Matsuno, Ber. Bunsenges. Phys. Chem., 1978, 82, 1093 Search PubMed.
  17. D. Chapman, Quart. Rev. Biophys., 1975, 8, 185 CAS.
  18. X. Zhou and L. Huang, Biochim. Biophys. Acta, 1993, 1189, 195.
Click here to see how this site uses Cookies. View our privacy policy here.