Baker–Nathan effect, hyperconjugation and polarizability effects in isolated molecules

(Note: The full text of this document is currently only available in the PDF Version )

Otto Exner and Stanislav Böhm


Abstract

The Baker–Nathan effect in alkyl-substituted benzene derivatives has been reinvestigated on the basis of the AM1 calculated enthalpies of formation, correlations of the known gas-phase basicities and ab initio calculated geometries. In neutral molecules any stabilization is absent; protonated species are strongly stabilized, depending on the alkyl polarizability. This dependence was revealed very clearly when the substituent CH2But was added to the traditional series, Me, Et, Pri, But. Any hyperconjugative order of alkyl reactivities was not observed in the gas-phase equilibria. Geometrical structures of benzyl, 4-methylbenzyl and 4-tert-butylbenzyl cations, calculated at the HF/6-31Gδ** and MP2/6-31G** levels, revealed small angle distortions within the CH3 group attributable to hyperconjugation of the α-hydrogen atoms. However, this effect is much smaller than the total interaction of either Me or But with the benzene nucleus seen particularly on the shortened Car–Calk bond and classified formally as a mesomeric effect. One must conclude that the term hyperconjugation has a very restricted meaning in the case of substituted benzyl cations. The well-known limiting formula reflects to a small degree the real structure but hyperconjugation has a negligible effect on energy quantities of these compounds. The Baker–Nathan effect reported in solution kinetics is thus evidently caused by steric hindrance to solvation; in isolated molecules it is not observable.


References

  1. C. K. Ingold, Structure and Mechanism in Organic Chemistry, Cornell University Press, Ithaca, NY, 1953; ch. 46e Search PubMed.
  2. O. Exner, Org. Reactivity (Tartu), 1995, 29, 1 Search PubMed.
  3. M. Decouzon, P. Ertl, O. Exner, J.-F. Gal and P.-C. Maria, J. Am. Chem. Soc., 1993, 115, 12 071 CrossRef CAS.
  4. M. Decouzon, O. Exnor, J.-F. Gal and P.-C. Maria, J. Chem. Soc., Perkin Trans. 2, 1996, 475 RSC.
  5. M. Decouzon, O. Exner, J.-F. Gal and P.-C. Maria, J. Phys. Org. Chem., 1994, 7, 615 CrossRef CAS.
  6. S. Böhm, M. Decouzon, O. Exner, J.-F. Gal and P.-C. Maria, J. Org. Chem., 1994, 59, 8127 CrossRef CAS.
  7. J. W. Baker and W. S. Nathan, J. Chem. Soc., 1935, 1841 and 1844 Search PubMed.
  8. L. Radom, Prog. Theor. Org. Chem., 1982, 3, 1 Search PubMed.
  9. E. Berliner, Tetrahedron, 1959, 5, 202 CrossRef CAS.
  10. J. W. Baker and M. L. Hemming, J. Chem. Soc., 1942, 191 RSC.
  11. R. F. W. Bader, T. S. Slee, D. Cremer and E. Kraka, J. Am. Chem. Soc., 1983, 105, 5061 CrossRef CAS.
  12. W. M. Schubert, R. B. Murphy and J. Robins, Tetrahedron, 1962, 17, 199 CrossRef CAS.
  13. J. M. W. Scott, Tetrahedron Lett., 1962, 373 CrossRef CAS.
  14. M. Charton and B. I. Charton, J. Org. Chem., 1982, 47, 8 CrossRef CAS.
  15. R. W. Taft and R. D. Topsom, Prog. Phys. Org. Chem., 1987, 16, 1 Search PubMed.
  16. (a) M. Bureš, R. Holub, J. Leitner and P. Voňka, Thermochemické veličiny organických sloučenin (Thermochemical Quantities of Organic Compounds), Institute of Chemical Technology, Prague, 1992 Search PubMed; (b) E. S. Domalski and E. D. Hearing, J. Phys. Chem. Ref. Data, 1993, 22, 805 CAS.
  17. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef.
  18. J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209 CrossRef CAS.
  19. R. Karaman, J.-L. Huang and L. Fry, J. Comput. Chem., 1990, 11, 1009 CrossRef CAS.
  20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. J. P. Stewart, M. Head-Gordon, C. Gonzales and J. A. Pople, GAUSSIAN94, Revision C.3, Gaussian, Inc., Pittsburgh, PA, 1995.
  21. O. Exner, Prog. Phys. Org. Chem., 1990, 17, 129 Search PubMed.
  22. N. D. Epiotis, J. Mol. Struct. (Theochem), 1991, 75, 205 CrossRef CAS.
  23. W. J. Hehre, C.-F. Pau, A. D. Headley and R. W. Taft, J. Am. Chem. Soc., 1986, 108, 1711 CrossRef CAS.
  24. B. T. Cooney and D. A. R. Happer, Aust. J. Chem., 1987, 40, 1537 CAS.
  25. O. Exner, M. Ingr and P. Čársky, J. Mol. Struct. (Theochem), in press Search PubMed.
  26. A. Domenicano and A. Vaciago, Acta Crystallogr. Sect. B, 1979, 35, 1382 CrossRef.
  27. M. Cyrański and T. M. Krygowski, Pol. J. Chem., 1995, 69, 1080 CAS.
  28. A. Domenicano and P. Murray-Rust, Tetrahedron Lett., 1979, 24, 2283 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.