Theoretical and electrochemical study of the mechanism of anthraquinone-mediated one-electron reduction of oxygen: the involvement of adducts of dioxygen species to anthraquinones

(Note: The full text of this document is currently only available in the PDF Version )

Danuta Jeziorek, Tadeusz Ossowski, Adam Liwo, Dariusz Dyl, Małgorzata Nowacka and Wiesław Woźnicki(Deceased)


Abstract

Anthraquinone derivatives, which are an important class of anticancer drugs, possess the ability to mediate the transfer of one electron to molecular oxygen to form the superoxide anion radical, which results in their undesirable peroxidating and, further, cardiotoxic properties. In this paper one-electron reduction of dioxygen–anthraquinone systems was studied using electrochemical and theoretical methods. Cyclic voltammetry (CV) experiments performed on dimethyl sulfoxide and dimethylformamide solutions of selected anthraquinones suggest that anthraquinones bearing hydroxy groups or their semiquinones interact remarkably with molecular oxygen; this is manifested as a shift of anthraquinone-reduction potential towards more positive values in the presence of oxygen. This phenomenon can be explained by the assumption that anthraquinone reduction is accompanied with oxygen addition to form hydroperoxide anion radicals, which can be formed by anthraquinones possessing proton-donor (e.g. hydroxy) groups only; the calculated (using the ab initio, DFT and semiempirical PM3 methods, with 1-hydroxynaphthoquinone and model anthraquinone derivatives as model compounds) enthalpies of this process are greater than those of anthraquinone reduction alone.


References

  1. J. W. Lown, Chem. Soc. Rev., 1993, 165 RSC.
  2. J. W. Lown, in Reactive Oxygen Species in Chemistry, Biology, and Medicine, ed. A. Quintanilha, Plenum Press, New York, 1988, pp. 167–185 Search PubMed.
  3. J. W. Lown, Anthracycline and anthracenedione-based anticancer drugs, Elsevier, Amsterdam, 1988 Search PubMed.
  4. J. H. Doroshow and K. J. A. Davies, J. Biol. Chem., 1986, 261, 3068 CAS.
  5. K. J. A. Davies and J. H. Doroshow, J. Biol. Chem., 1986, 261, 3060 CAS.
  6. E. G. Mimaugh, M. A. Trush and T. M. Gram, Biochem. Pharmacol., 1981, 30, 2797 CrossRef.
  7. J. Tarasiuk, A. Garnier-Suillerot and E. Borowski, Biochem. Pharmacol., 1989, 38, 2285 CrossRef CAS.
  8. A. Tempczyk, J. Tarasiuk, T. Ossowski and E. Borowski, Anti-Cancer Drug Design, 1988, 2, 371 Search PubMed.
  9. J. Tarasiuk, A. Liwo, S. Wojtkowiak, M. Dzieduszycka, A. Tempczyk, A. Garnier-Suillerot, S. Martelli and E. Borowski, Anti-Cancer Drug Design, 1991, 6, 399 Search PubMed.
  10. D. Jeziorek, D. Dyl, A. Liwo, W. Woźnicki, A. Tempczyk and E. Borowski, AntiCancer Drug Design, 1992, 7, 451 Search PubMed.
  11. D. Jeziorek, D. Dyl, A. Liwo, W. Woźnicki, A. Tempczyk and E. Borowski, Anti-Cancer Drug Design, 1993, 8, 223 Search PubMed.
  12. D. Jeziorek, D. Dyl, A. Liwo, T. Ossowski and W. Woźnicki, Anti-Cancer Drug Design, 1994, 9, 435 Search PubMed.
  13. N. R. Bachur, S. R. Gordon and M. V. Gee, Cancer Res., 1978, 38, 1745 CAS.
  14. E. A. Lissi, M. Encinas, E. Lemp and M. A. Rubio, Chem. Rev., 1993, 93, 699 CrossRef CAS.
  15. A. Carmichel, M. M. Mossoba and P. Riesz, FEBS Lett., 1983, 164, 401 CrossRef.
  16. J. L. Zweier, J. Biol. Chem., 1983, 259, 6056.
  17. L. Gianni, J. L. Zweier, A. Levy and C. E. Myers, J. Biol. Chem., 1985, 260, 6820 CAS.
  18. M. S. Kharasch and B. S. Joshi, J. Org. Chem., 1957, 22, 1439 CrossRef CAS.
  19. M. J. Thomas and C. S. Foote, Photochem. Photobiol., 1978, 27, 683 CAS.
  20. F. Jensen and C. S. Foote, Photochem. Photobiol., 1987, 46, 325 CAS.
  21. R. L. Clough, B. G. Yee and C. S. Foote, J. Am Chem. Soc., 1979, 101, 683 CrossRef CAS.
  22. P. Dowd, S. W. Ham and S. J. Geib, J. Am. Chem. Soc., 1991, 113, 7734 CrossRef CAS.
  23. D. T. Sawyer and E. J. Nanni, in Oxygen and oxy-radicals in chemistry and biology, ed. M. A. J. Rodgers and E. L. Powers, Academic Press, New York, 1982, pp. 15–44 Search PubMed.
  24. D. J. Schiffrin, in Electrochemistry, ed. D. Pletcher, The Chemical Society, Burlington House, London, 1983, vol. 8, ch. 4 Search PubMed.
  25. H. Weiss, T. Friedrich, G. Hofhaus and D. Preis, Eur. J. of Biochem., 1991, 197, 563 Search PubMed.
  26. D. D. Perrin and W. L. F. Armari, Purification of Laboratory Chemicals, Pergamon Press, New York, 1988 Search PubMed.
  27. J. G. Hanna, in Treatise on Analytical Chemistry, ed. I M Kolthoff and P. J. Elving, Wiley, New York, 1983, Part I, vol. 3., pp. 557–559, and references therein Search PubMed.
  28. D. K. Gosser, Jr, Cyclic Voltammetry. Simulation and Analysis of Reaction Mechanisms, VCH Publishers, New York 1993 Search PubMed.
  29. Z. Galus, Fundamentals of Electrochemical Analysis, Ellis Horwood, New York, PWN, Warsaw, 1994, pp. 294–295 Search PubMed.
  30. R. L. Audri, A. O. Allen and B. H. Bielski, FEBS Lett., 1981, 135, 265 CrossRef.
  31. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. J. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis and J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347 CrossRef CAS.
  32. J. Andzelm, in Density Functional Methods in Chemistry, ed. J. K. Labanowski and J. W. Andzelm, Springer, New York, 1993, pp. 155–174 Search PubMed.
  33. J. J. P. Stewart, J. Comput.-Aided Mol. Design, 1990, 4, 1 Search PubMed.
  34. J. J. P. Stewart, MOPAC 93.00 Manual. Fujitsu Limited, Tokyo, Japan, 1993.
  35. N. E. Heimer, J. T. Swanson and J. J. P. Stewart, QCPE program QCPM 085, modified by Kapsomenos G. QCPE Catalogue, 1991, 23, 41.
  36. J. J. Gajewski and K. E. Gilbert, PCMODEL ver. 4.0, Serena Software, Box 3076, Bloomington 1991, Indiana, USA.
  37. W. Adam and B. Nestler, J. Am. Chem. Soc., 1993, 115, 5041 CrossRef CAS.
  38. K. Fukuhara, Y. Hara and N. Miyata, J. Chem. Soc., Chem. Commun., 1994, 955 RSC.
  39. A. Klamt and G. Schüürmann, J. Chem. Soc., Perkin Trans. 2, 1993, 799 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.