Cation complexation by chemically modified calixarenes. Part 10. Thioamide derivatives of p-tert-butylcalix[4]-, [5]- and [6]-arenes with selectivity for copper, silver, cadmium and lead. X-Ray molecular structures of calix[4]arene thioamide–lead(II) and calix[4]arene amide–copper(II) complexes

(Note: The full text of this document is currently only available in the PDF Version )

Françoise Arnaud-Neu, Geraldine Barrett, Denis Corry, Suzanne Cremin, George Ferguson, John F. Gallagher, Stephen J. Harris, M. Anthony McKervey and Marie‐Jose Schwing‐Weill


Abstract

The effect of chemical modification of the lower rim of p-tert-butylcalix[4]-, [5]- and [6]-arenes has been analysed with respect to cation binding by thioamide podands. Extraction data for metal picrates from water into dichloromethane are discussed. CuII, PbII and AgI ions are extracted efficiently by all the thioamides studied, whereas extraction of CdII only reaches significant levels with the pentamer derivative. Unlike their calixarene amide counterparts, these thioamides have no affinity in extraction for either alkali or alkaline earth metals. The X-ray molecular structure of a thioamide–PbII(ClO4[hair space])2 complex and, for comparison, that of an amide–CuII(ClO4[hair space])2 complex have been determined. Both complexes exist in the cone conformation with the metal ion encapsulated by the heteroatoms on the lower rin. The crystal structure of the lead complex derivative 5·Pb(ClO4[hair space])2·EtOH·0.5 H2O, was solved by Patterson methods and refined by block diagonal least-squares analysis. The crystals are triclinic, space group P[1 with combining macron], a = 13.394(6), b = 13.459(6), c = 26.711(4) Å, a = 78.33(2), β = 87.62(2), γ = 60.46(2)° with R = 0.108 for 4417 observed reflections. The Pb2+ is bonded to the four ethereal oxygen and four thiocarbonyl sulfur atoms, [Pb–O, 2.65(2) to 2.72(2), mean value 2.68(3) Å; Pb–S, 2.82(1) to 2.95(1) with a mean of 2.91(3) Å]. The crystal structure of the copper calixarene complex 2·Cu(ClO4[hair space])2·H2O ·1.4CH3OH·EtOH, was solved by direct methods and refined by block-diagonal least-squares methods. The crystals are tetragonal, space group P4/ncc a = 17.147(2), c = 28.054(4) Å, with R = 0.079 for 1482 observed reflections. The Cu2+ resides on a four-fold axis and is bonded to the four carbonyl oxygen atoms [Cu–O, 1.926(6) Å]. Four ethereal oxygen atoms are at a distance of 2.963(6) Å from the metal ion.


References

  1. C. D. Gutsche, Calixarenes, vol. 1 in ‘Monographs in Supramolecular Chemistry’, ed. J. F. Stoddart, Royal Society of Chemistry, Cambridge, 1989 Search PubMed.
  2. Topics in Inclusion Phenomena, Calixarenes a Verstaile Class of Macrocyclic Compounds, ed. V. Böhmer and J. Vicens, Kluwer Academic Publishers, 1990 Search PubMed.
  3. V. Bocchi, D. Foina, A. Pochini, R. Ungaro and C. D. Andreetti, Tetrahedron, 1982, 38, 373 CrossRef CAS.
  4. M. A. McKervey, E. M. Seward, G. Ferguson, B. L. Ruhl and S. J. Harris, J. Chem. Soc., Chem. Commun., 1985, 388 RSC.
  5. S. K. Chang and I. Cho, Chem. Lett., 1984, 477 CAS; J. Chem. Soc., Perkin Trans. 1, 1986, 211 Search PubMed.
  6. M. J. Schwing-Weill and M. A. McKervey, ref. 2, pp. 149–172.
  7. F. Arnaud-Neu, E. M. Collins, M. Deasy, G. Ferguson, S. J. Harris, B. Kaitner, A. J. Lough, M. A. McKervey, E. Marquis, B. L. Ruhl, M. J. Schwing-Weill and E. M. Seward, J. Am. Chem. Soc., 1989, 111, 8681 CrossRef CAS.
  8. A. Arduini, A. Pochini, S. Reverberi, R. Ungaro, G. D. Andreetti and F. Ugozzoli, Tetrahedron, 1986, 42, 2089 CrossRef CAS.
  9. F. Arnaud-Neu, G. Barrett, S. Cremin, M. Deasy, G. Ferguson, S. J. Harris, A. J. Lough, L. Guerra, M. A. McKervey, M. J. Schwing-Weill and P. Schwinte, J. Chem. Soc., Perkin Trans. 2, 1992, 1119 RSC.
  10. G. Ferguson, B. Kaitner, M. A. McKervey and E. M. Seward, J. Chem. Soc., Chem. Commun., 1987, 584 RSC.
  11. F. Arnaud-Neu, G. Barrett, S. J. Harris, M. A. McKervey, M. Owens, M.-J. Schwing-Weill and P. Schwinte, Inorg. Chem., 1993, 32, 2644 CrossRef CAS.
  12. G. Calestani, F. Ugozzoli, A. Arduini, E. Ghidini and R. Ungaro, J. Chem. Soc., Chem. Commun., 1987, 344 RSC.
  13. F. Arnaud-Neu, M.-J. Schwing-Weill, K. Ziat, S. Cremin, S. J. Harris and M. A. McKervey, New. J. Chem., 1991, 15, 33 Search PubMed.
  14. (a) A. Arduini, E. Ghidini, A. Pochini, R. Ungaro, G. D. Andreetti, G. Calestani and F. Ugozzoli, J. Inclusion Phenom., 1988, 119 CrossRef CAS; (b) G. D. Andreetti, G. Calestani, F. Ugozzoli, A. Arduini, E. Ghidini, A. Pochini and R. Ungaro, J. Inclusion Phenom., 1987, 5, 123 CrossRef; (c) very recently the X-ray crystal structure of a strontium complex of diethyl amide 2 was published, N. Muzet, G. Wipff, A. Casnati, L. Domiano, R. Ungaro and F. Ugozzoli, J. Chem. Soc., Perkin Trans. 2, 1996, 1065 Search PubMed.
  15. S. K. Chang and I. Cho, Chem. Lett., 1987, 947 CAS.
  16. R. Ungaro and A. Pochini, ref. 2, pp. 127–147; C. Alfieri, E. Dradi, A. Pochini, R. Ungaro and G. D. Andreetti, J. Chem. Soc., Chem. Commun., 1983, 1075 Search PubMed; E. Ghidini, F. Ugozzoli, R. Ungaro, S. Harkema, A. Abu El-Fadl and D. N. Reinhoudt, J. Am. Chem. Soc., 1990, 112, 6979 RSC.
  17. D. N. Reinhoudt, P. J. Dijkstra, P. J. A. in't Veld, K. E. Bugge, S. Harkema, R. Ungaro and E. Ghidini, J. Am. Chem. Soc., 1987, 109, 4761 CrossRef CAS.
  18. D. Diamond, G. Svehla, E. Seaward and M. A. McKervey, Anal. Chim. Acta, 1988, 204, 223 CrossRef CAS; K. Kumura, M. Matsuo and T. Shona, Chem. Lett., 1988, 615 CAS.
  19. J. A. J. Brunick, J. R. Haak, J. G. Bomer, D. Reinhoudt, M. A. McKervey and S. J. Harris, Anal. Chim. Acta, 1991, 254, 75 CrossRef CAS; R. J. W. Lugtemberg, Z. Brzozka, A. Casnati, R. Ungaro, J. F. J. Engbersen and D. N. Reinhoudt, Anal. Chim. Acta, 1995, 310, 263 CrossRef CAS.
  20. For a preliminary report of this work, excluding the X-ray crystal structures, see F. Arnaud-Neu, M. A. McKervey and M.-J. Schwing-Weill, J. Phys. Org. Chem., 1992, 5, 496 Search PubMed Shortly after this report, the use of calixarene derivatives, including thioamides as ionophores in ESFET devices, was described by P. L. H. M. Cobben, R. J. M. Egberink, J. G. Bomer, P. Bergveld, W. Verboom and D. N. Reinhoudt, J. Am. Chem. Soc., 1992, 114, 10573 CrossRef CAS.
  21. S. J. Harris, M. McManus, C. McArdle and M. A. McKervey, Eur. Pat. No. 0432989A2, 12 December 1990 Search PubMed.
  22. F. Arnaud-Neu, G. Barrett, S. Fanni, D. Marrs, W. McGregor, M. A. McKervey, M.-J. Schwing-Weill, V. Vetrogon and S. Wechsler, J. Chem. Soc., Perkin Trans 2, 1995, 453 RSC.
  23. For the preparation of the carboxylic acid from which this amide was made, see G. Barrett, M. A. McKervey, J. F. Malone, A. Walker, F. Arnaud-Neu, L. Guerra, M.-J. Schwing-Weill, C. D. Gutsche and D. R. Stewart, J. Chem. Soc., Perkin Trans 2, 1993, 1475 Search PubMed.
  24. A. Ikeda and S. Shinkai, J. Am. Chem. Soc., 1994, 116, 3102 CrossRef CAS.
  25. P. Guilbaud, A. Varnek and G. Wipff, J. Am. Chem. Soc., 1993, 115, 8289; A. Varnek and G. Wipff, J. Phys. Chem., 1993, 97, 10840 CrossRef CAS.
  26. P. D. Beer, M. G. B. Drew, P. B. Leeson and M. I. Ogden, J. Chem. Soc., Dalton Trans., 1995, 1273 RSC.
  27. M. Nardelli and G. Fava, Acta Crystallogr., 1959, 12, 727 CrossRef CAS.
  28. A. L. Spek, Acta Crystallogr., Sect. A, 1990, 46, C34.
  29. G. M. Sheldrick, SHELXS86, Crystallographic Computing 3, G. M. Sheldrick, C. Kruger and R. Goddard, Oxford University Press, London, 1986, pp 175–189.
  30. E. J. Gabe, Y. Lepage, J. P. Charland, F. L. Lee and P. S. White, J. Appl. Cryst., 1989, 22, 384 CrossRef.
  31. C. K. Johnson, ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA 1976.
  32. A. L. Spek, PLUTON Molecular Graphics Program, The University of Utrecht, The Netherlands, 1991.
Click here to see how this site uses Cookies. View our privacy policy here.