A kinetic, product and kinetic isotope effect investigation of the bromination of 1,1-diphenylethylenes and of their 2,2-dideuterio derivatives

(Note: The full text of this document is currently only available in the PDF Version )

Giuseppe Bellucci and Cinzia Chiappe


Abstract

The kinetics of bromination of 1,1-diphenylethylene (1a), 4-trifluoromethyl-1,1-diphenylethylene (1b), and 1-(3-trifluoromethylphenyl)-1-(4-trifluoromethylphenyl)ethylene (1c) and of their 2,2-dideuterio derivatives have been investigated in 1,2-dichloroethane. The rate law was always second-order in Br2 and first-order in olefin, with the following k3: 1a (L = H), 1.7 (0.1) × 107; 1b (L = H), 8.0 (0.1) × 104; 1c (L = H), 52 (2) dm6 mol-2 s-1. Olefin 1a (L = H) gave dibromide 4a and vinyl bromide 3a in a ratio changing from 99∶1 at 10-2 mol dm-3 to 5∶95 at 10-4 mol dm-3 Br2 and olefin. The k3 was independent of the reagent concentrations and of the extent of proton loss from the intermediate, showing that the last step was not rate limiting and the formation of the intermediate was completely rate determining. In the whole investigated concentration range, only dibromides 4b and 4c were instead obtained from 1b and 1c, respectively. A negligible KIE, 0.97 (0.01) was found for 1a, whether the dibromide or the vinyl bromide was the main product, while significant inverse KIEs were obtained for 1b, 0.75 (0.05), for 1c, 0.70 (0.05), on deuteriation of the methylene group, and for cis-1,2-diphenylethylene, 2. The kinetic and product distribution data are discussed in terms of nature of the intermediates, depending on substituent effect and reagent concentration.


References

  1. (a) G. H. Schmid and D. G. Garrat, The Chemistry of Double-Bonded Functional Groups, ed. S. Patai, Wiley, New York, 1977 Suppl. A, Part 2, p. 725 Search PubMed; (b) P. B. D. De la Mare and R. Bolton, Electrophilic Additions to Unsaturated Systems, Elsevier, New York, 2nd edn., 1982, p. 136 Search PubMed; (c) K. A. V'yunov and A. I. Guniak, Russ. Chem. Rev. (Engl. Trans.), 1981, 50, 151 Search PubMed.
  2. For recent reviews see: (a) G. H. Schmid, The Chemistry of Double-Bonded Functional Groups, ed. S. Patai, Wiley, New York, 1989 suppl. A, vol. 2 pt. 1, p. 699 Search PubMed; (b) M. F. Ruasse, Adv. Phys. Org. Chem., 1993, 28, 207 CAS.
  3. (a) R. S. Brown, R. Gedye, H. Slebocka-Tilk, J. M. Buschek and K. R. Kopecky, J. Am. Chem. Soc., 1984, 106, 4515 CrossRef; (b) G. Bellucci, C. Chiappe and F. Marioni, J. Am. Chem. Soc., 1987, 109, 515 CrossRef CAS; (c) G. Bellucci, R. Bianchini, C. Chiappe, F. Marioni and R. Spagna, J. Am. Chem. Soc., 1988, 110, 546 CrossRef CAS; (d) M. F. Ruasse, S. Motallebi and B. Galland, J. Am. Chem. Soc., 1991, 113, 3440 CrossRef CAS; (e) G. Bellucci, C. Chiappe, F. Marioni and F. Marchetti, J. Phys. Org. Chem., 1991, 4, 387 CrossRef CAS; (f) G. Bellucci, R. Bianchini, C. Chiappe, R. S. Brown and H. Slebocka-Tilk, J. Am. Chem. Soc., 1991, 113, 8012 CrossRef CAS; (g) G. Bellucci, R. Bianchini, C. Chiappe, R. Ambrosetti, D. Catalano, A. J. Bennet, H. Slebocka-Tilk, M. G. H. Aarts and R. S. Brown, J. Org. Chem., 1993, 58, 3401 CrossRef CAS; (h) C. Y. Zheng, H. Slebocka-Tilk, R. W. Nagorski, L. Alvarado and R. S. Brown, J. Org. Chem., 1993, 58, 2122 CrossRef CAS; (i) R. W. Nagorski, H. Slebocka-Tilk and R. S. Brown, J. Am. Chem. Soc., 1994, 116, 419 CrossRef CAS.
  4. G. Bellucci, C. Chiappe, R. Bianchini, D. Lenoir and R. Herges, J. Am. Chem. Soc., 1995, 117, 12001 CrossRef CAS.
  5. R. Nagorski and R. S. Brown, J. Am. Chem. Soc., 1992, 114, 7773 CrossRef CAS.
  6. M. F. Ruasse, Acc. Chem. Res., 1990, 23, 87 CrossRef CAS.
  7. (a) R. S. Brown, H. Slebocka-Tilk, A. J. Bennet, G. Bellucci, R. Bianchini and R. Ambrosettil, J. Am. Chem. Soc., 1990, 112, 6310 CrossRef CAS; (b) H. Slebocka-Tilk, C. Y. Zheng and R. S. Brown, J. Am. Chem. Soc., 1993, 115, 1347 CrossRef CAS; (c) G. Bellucci, R. Bianchini, C. Chiappe, D. Lenoir and A. Attar, J. Am. Chem. Soc., 1995, 117, 6243 CrossRef CAS.
  8. L. F. Fieser, J. Chem. Educ., 1954, 31, 291 CAS.
  9. R. Bianchini and C. Chiappe, J. Org. Chem., 1992, 57, 6474 CrossRef CAS.
  10. A KIE = 0.91 has been previously reported for trans-1,2-diphenyl[2H2] ethylene in diethyl ether: D. B. Denny and N. Tunkel, Chem. Ind. (London), 1959, 1383 Search PubMed.
  11. J. J. Gajewski, K. B. Peterson, J. R. Kagal and Y. C. Huang, J. Am. Chem. Soc., 1989, 111, 9078 CrossRef CAS.
  12. Y. Elemes and C. S. Foote, J. Am. Chem. Soc., 1992, 114, 8044.
  13. F. Ruff and I. G. Csimadia, Organic Reactions, Equilibria, Kinetics and Mechanism, Elsevier, New York, 1994, pp. 233–236 Search PubMed.
  14. E. C. Ashby and J. J. Lin, J. Org. Chem., 1978, 43, 2567 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.