Selected cis/trans isomers of carotenoids formed by bulk electrolysis and iron(III) chloride oxidation

(Note: The full text of this document is currently only available in the PDF Version )

Chih-Chang Wei, Guoqiang Gao and Lowell D. Kispert


Abstract

Bulk electrolysis and chemical oxidation with FeCl3 of all-trans canthaxanthin (I) and 8′-apo-β-caroten-8′-al (II) gave primarily the 9- and 13-cis-isomers, which were separated by HPLC and identified by 1H NMR spectroscopy. Optical absorption measurements showed that the 15-cis, 9,13-di-cis isomers of I are also formed by these methods. In the case of the unsymmetrical compound II, additional isomers were formed. The cis isomers account for about 40–60% of products formed. Formation of the isomers is believed to occur by rotation about certain bonds in the cation radicals or dications, which are formed in the oxidation processes. The neutral cis species are then formed by an electron exchange reaction of the cis-cation radicals with neutral all-trans carotenoids in solution. The electrochemical and iron(III) chloride oxidation induced isomerization are shown to be efficient and improved methods for forming selected carotenoid isomers.


References

  1. Y. Koyama, J. Photochem. Photobiol., 1991, B9, 265 Search PubMed.
  2. M. Mimuro and T. Katoh, Pure Appl. Chem., 1991, 63, 123 CAS.
  3. H. Pfander, Key to Carotenoids, Birkhäuser Verlag, Basel, 2nd edn., 1987 Search PubMed.
  4. R. G. Ziegler, Am. J. Clin. Nutr., 1991, 53, 2515 Search PubMed.
  5. N. I. Krinsky, Clin. Nutr., 1988, 7, 107.
  6. L. Zechmeister, Cis-Trans Isomeric Carotenoids, Vitamin A and Arylpolyenes, Academic Press, New York, 1962 Search PubMed.
  7. A. S. Jeevarajan, C. C. Wei and L. D. Kispert, J. Chem. Soc., Perkin Trans. 2, 1994, 861 RSC.
  8. B. H. Davies, in Chemistry and Biochemistry of Plant Pigments, ed. T. W. Goodwin, Academic Press, New York, 2nd edn., 1976, vol. 2, ch. 19, p. 69 Search PubMed.
  9. T. W. Goodwin, The Biochemistry of the Carotenoids, Chapman and Hall, New York, 2nd edn., 1980, vol. 1 Search PubMed.
  10. Ch. Gansser and L. Zechmeister, Helv. Chim. Acta, 1957, 40, 1757 CrossRef CAS.
  11. H. J. C. F. Nelis, P. Lavens, L. Moens, P. Sorgeloos, J. A. Jonckheere, G. R. Criel and A. P. de Leenheer, J. Biol. Chem., 1984, 259, 6063 CAS.
  12. H. Hashimoto, Y. Koyama and T. Shimamura, J. Chromatogr., 1988, 448, 182 CrossRef CAS.
  13. H. J. C. F. Nelis, M. M. Z. van Steenberge, M. F. Lefevere and A. P. de Leenheer, J. Chromatogr., 1986, 353, 295 CrossRef CAS.
  14. H. Hashimoto, Y. Miki, M. Kuki, T. Shimamura, H. Utsumi and Y. Koyama, J. Am. Chem. Soc., 1993, 115, 9216 CrossRef CAS and references therein.
  15. J. L. Grant, V. J. Krammer, R. Ding and L. D. Kispert, J. Am. Chem. Soc., 1988, 110, 2151 CrossRef CAS.
  16. V. G. Mairanovsky, A. A. Engovatov, N. T. Ioffe and G. I. Samokhvalov, J. Electroanal. Chem., 1975, 66, 123 CrossRef.
  17. A. S. Jeevarajan, L. D. Kispert and X. Wu, Chem. Phys. Lett., 1994, 219, 427 CrossRef CAS.
  18. L. Piekara-Sady, A. S. Jeevarajan and L. D. Kispert, Chem. Phys. Lett., 1993, 207, 173 CrossRef CAS.
  19. A. S. Jeevarajan, M. Khaled and L. D. Kispert, J. Phys. Chem., 1994, 98, 7777 CrossRef CAS.
  20. A. S. Jeevarajan, M. Khaled and L. D. Kispert, Chem. Phys. Lett., 1994, 225, 340 CrossRef CAS.
  21. G. Gao, C. C. Wei, A. S. Jeevarajan and L. D. Kispert, J. Phys. Chem., 1996, 100, 5362 CrossRef CAS.
  22. P. Bäuerle, U. Segelbacher, K. Gaudl, D. Huttenlocher and M. Mehring, Angew. Chem., Int. Ed. Engl., 1993, 32, 76 CrossRef.
  23. M. Sato and M. Hiroi, Syn. Metals, 1995, 69, 307 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.