Conformational analysis of symmetric bilirubin analogues with varying length alkanoic acids. Enantioselectivity by human serum albumin

(Note: The full text of this document is currently only available in the PDF Version )

Francesc R. Trull, Richard V. Person and David A. Lightner


Abstract

Symmetric analogues of mesobilirubin-XIIIα, with propionic acid groups shortened to acetic and lengthened to undecanoic, exhibit induced circular dichroism (ICD) in pH 7.5 buffered aqueous [1–5% dimethyl sulfoxide (DMSO) co-solvent] solution in the presence of human serum albumin (HSA). The CD spectra exhibit bisignate Cotton effects with ωεmax434 = +87, ωεmax389 = -54 (acetic), ωεmax436 = +37, ωεmax388 = -42 (propionic), ωεmax420 = -15, ωεmax370 = +8 (butyric), [ωεmax433 = -97, ωεmax388 = +89 in 30% aqueous DMSO], ωεmax449 = +6, ωεmax397 = -46 (valeric), ωεmax440 = +57, ωεmax392 = -96 (caproic), ωεmax440 = +15, ωεmax393 = -21 (caprylic) and ωεmax448 = +18, ωεmax385 = -31 (undecanoic). These values result from chromophore conformation (i.e. exciton coupling) and enantioselectivity by the protein (i.e. preference for a given bilirubin enantiomer). The UV–VIS spectra of the acetic to butyric, caprylic and undecanoic complexes are similar in shape, with a shoulder in addition to the main band, and reminiscent of that of the bilirubin-IXα HSA complex, indicating an analogous, folded conformation for all. The spectra of the valeric and caproic complexes, in turn, are more symmetric and red-shifted, suggesting a more extended conformation. Experimental CD values in each of these two series have been interpreted in terms of the different enantioselectivity by the protein, with the right handed acetic and caproic enantiomers fitting best the protein binding site (ωωε ca. 150) and the protein showing a lower preference for the right handed propionic enantiomer (ωωε ca. 80) and even lower for the right handed valeric, caprylic and undecanoic enantiomer (ωωε ca. 50), but left handed butyric enantiomer (ωωε ca. 24).The differences observed in the UV–VIS spectra of each complexed (in aqueous buffer) vs. uncomplexed pigment (in MeOH), i.e. spectral shifts (7–11 nm for acetic to butyric and undecanoic, 12 nm for valeric and 16–18 nm for caproic and caprylic) and shape (reduction from two to one transition for valeric and caproic—but not for the rest) reflect the changes in pigment conformation induced by the protein. These changes are especially noticeable for the caproic and caprylic analogues.Taken collectively, the present results indicate that the length of the alkanoic acid chains at C8 and C12 is essential for determining not only the pigment conformation, but also the enantioselectivity by the protein (through specific pigment–protein interactions) and agree with previous suggestions that these interactions may involve (at least) one salt linkage and hydrogen bonding.The effect upon the ICD of each rubin-HSA complex of other parameters such as the percentage of DMSO used as carrier in the solution and the nature of the buffer has also been investigated. Surprisingly, an increase in the amount of DMSO from 3–30% results in dramatic changes in the observed CD of the butyric and (to a lesser extent) propionic, undecanoic complexes. These have been interpreted in terms of selective changes in the tertiary structure of the protein.


References

  1. D. A. Lightner and A. F. McDonagh, Acc. Chem. Res., 1984, 17, 417 CrossRef CAS.
  2. (a) R. V. Person, B. R. Peterson and D. A. Lightner, J. Am. Chem. Soc., 1994, 116, 42 CrossRef CAS; (b) R. V. Person, PhD Dissertation (Conform-ational Analysis of Bilirubin and its Analogues), University of Nevada, 1993.
  3. P. Manitto and D. Monti, J. Chem. Soc., Chem. Commun., 1976, 122 RSC.
  4. G. Navon, S. Frank and D. Kaplan, J. Chem. Soc., Perkin Trans. 2, 1984, 1145 RSC.
  5. (a) R. Bonnett, J. E. Davies, N. B. Hursthouse and G. M. Sheldrick, Proc. R. Soc. London, Ser. B, 1978, 202, 249 Search PubMed; (b) G. LeBas, A. Allegret, Y. Mauguen, C. DeRango and M. Bailly, Acta Crystallogr., Sect. B, 1980, 36, 3007 CrossRef.
  6. R. Brodersen, in Bile Pigments and Jaundice, ed. J. D. Ostrow, Marcel Dekker, New York, 1986; and references therein Search PubMed.
  7. G. Blauer, E. Lavie and J. Silfen, Arch. Biochem. Biophys., 1977, 492, 64 CrossRef CAS.
  8. For recent reviews, see: Pathobiology of Bilirubin and Jaundice, in J. L. Gollan, (Guest Ed.)Seminars in Liver Disease, Thieme Medical Publishers, Inc., New York, 1988, vol. 8, parts 2 and 3 Search PubMed.
  9. A. F. McDonagh and D. A. Lightner, Pediatrics, 1985, 75, 443 Search PubMed.
  10. A. F. McDonagh, in The Porphyrins, ed. D. Dolphin, Academic Press, New York, 1979, vol. VI, p. 293 Search PubMed.
  11. Bilirubin, eds. K. P. M. Heirwegh and S. B. Brown, CRC Press, Boca Raton, FL, 1982, vols. 1 and 2 and references therein Search PubMed.
  12. D. A. Lightner, J. K. Gawronski and W. M. D. Wijekoon, J. Am. Chem. Soc., 1987, 109, 6354 CrossRef CAS.
  13. D. A. Lightner, M. Reisinger and G. L. Landen, J. Biol. Chem., 1986, 261, 6034 CAS and references therein.
  14. D. A. Lightner, W. M. D. Wijekoon and M.-H. Zhang, J. Biol. Chem., 1988, 263, 16669 CAS.
  15. G. Puzicha, Y.-M. Pu and D. A. Lightner, J. Am. Chem. Soc., 1991, 113, 3583 CrossRef CAS.
  16. (a) G. Blauer, D. Harmatz and J. Snir, Biochim. Biophys. Acta, 1972, 278, 68 CrossRef CAS; (b) G. Blauer and D. Harmatz, Biochim. Biophys. Acta, 1972, 278, 89 CrossRef CAS; (c) D. Harmatz and G. Blauer, Arch. Biochem. Biophys., 1975, 170, 375 CrossRef CAS; (d) G. Blauer and G. Wagnière, J. Am. Chem. Soc., 1975, 97, 1949 CrossRef CAS; (e) G. Blauer, Isr. J. Chem., 1983, 23, 201 CAS.
  17. J. Jacobsen and R. Brodersen, J. Biol. Chem., 1983, 258, 6319 CAS.
  18. J. Broos, A. J. W. G. Visser, J. F. J. Engbersen, W. Verboom, A. van Hock and D. N. Reinhoudt, J. Am. Chem. Soc., 1995, 117, 12657 CrossRef CAS.
  19. H. Murakawa, J. Abe, A. Seki and H. Takahashi, J. Mol. Struct., 1993, 297, 41 CrossRef CAS.
  20. F. R. Trull, D. P. Shrout and D. A. Lightner, Tetrahedron, 1992, 48, 8189 CrossRef CAS.
  21. J.-S. Ma and D. A. Lightner, J. Heterocycl. Chem., 1984, 21, 1005 CAS.
  22. M. Fontich, M. Rodríguez and F. R. Trull, Synth. Commun., 1994, 24, 993 CAS.
  23. M. Reisinger, F. R. Trull and D. A. Lightner, J. Heterocycl. Chem., 1985, 22, 1221 CAS.
  24. F. R. Trull, M. Rodríguez and D. A. Lightner, Synth. Commun., 1993, 23, 2771 CAS.
  25. F. R. Trull, R. W. Franklin and D. A. Lightner, J. Heterocycl. Chem., 1987, 24, 1573 CAS.
  26. D. P. Shrout, G. Puzicha and D. A. Lightner, Synthesis, 1992, 3, 328 CrossRef.
  27. J. Chiefari, R. V. Person and D. A. Lightner, Tetrahedron, 1992, 48, 5969 CrossRef CAS.
  28. W. L. Shelver, H. Rosenberg and W. H. Shelver, Int. J. Quantum Chem., 1992, 44, 141 CrossRef CAS.
  29. D. A. Lightner, R. V. Person, B. R. Peterson, G. Puzicha, Y.-M. Pu and S. E. Bojadziev, Biomolecular Spectroscopy II, eds. R. R. Birge and L. A. Nafie, Proc. SPIE, 1991, 1432, 2 Search PubMed.
  30. R. V. Person, S. E. Boiadjiev, B. R. Peterson, G. Puzicha and D. A. Lightner, 4th International Conference on Circular Dichroism, Sept. 9–13, 1991, Bochum, FRG, p. 55 Search PubMed.
  31. M. Kasha, H. R. Rawls and M. A. El-Bayoumi, Pure Appl. Chem., 1965, 32, 371.
  32. N. Harada and K. Nakanishi, Circular Dichroic Spectroscopy-Exciton Coupling in Organic Stereochemistry, University Science Books, Mill Valley, CA, 1983 Search PubMed.
  33. Data from reverse-phase HPLC column using a 0.1 m di-octyl-ammonium acetate in MeOH buffer with 5% water at pH 7.7 according to A. F. McDonagh, L. A. Palma, F. R. Trull and D. A. Lightner, J. Am. Chem. Soc., 1982, 104, 6865 Search PubMed.
  34. S. E. Boiadjiev, R. V. Person, G. Puzicha, C. Knobler, E. Maverick, K. N. Trueblood and D. A. Lightner, J. Am. Chem. Soc., 1992, 114, 10123 CrossRef CAS.
  35. Y.-M. Pu, A. F. McDonagh and D. A. Lightner, J. Am. Chem. Soc., 1993, 115, 377 CrossRef CAS.
  36. H. Falk, T. Schlederer and P. Wolschann, Monatsch Chem., 1981, 112, 199 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.