Electrostatic as well as hydrophobic interactions are important for the association of Cpn60 (groEL) with peptides

(Note: The full text of this document is currently only available in the PDF Version )

Jonathan P. Hutchinson, Timothy C. Oldham, Talal S. H. El-Thaher and Andrew D. Miller


Abstract

The interactions of groEL with five N-dansyl peptides were investigated by means of a fluorescence binding assay. The peptides studied (Bamph, Bhphil, Aamph, Ahphil, Namph) were designed and synthesised as systematic variants of each other in terms of their patterns of charge and hydrophobicity. Fluorescence data were analysed using a fluorescence modified, y-reciprocal linearised form of the Benesi–Hildebrand equation which was derived from first principles and verified by theoretical simulations. Under optimal conditions, apparent dissociation constants, Kd, were obtained in the µM range. At physiologically relevant ionic strengths, only two peptides (basic amphiphilic Bamph and neutral amphiphilic Namph) interacted with groEL whilst a third peptide (acidic amphiphilic Aamph) was able to interact but only at very high ionic strength (> 1 mol kg-1). Thermodynamic (van’t Hoff) analysis of the tightest binder, basic amphiphilic Bamph peptide, revealed endothermic binding and a large positive entropy, ΔSobind, consistent with a mixed binding mode involving both hydrophobic and electrostatic interactions. At physiologically relevant ionic strengths, positively charged amino acid residues appear to augment hydrophobic binding interactions with groEL by electrostatic attraction whilst negatively charged amino acid residues oppose short-range hydrophobic interactions with electrostatic repulsion. In conclusion, whilst a principal means of interaction between groEL and a peptide or partially folded protein substrate is certainly hydrophobic, electrostatic effects can modulate or even overwhelm this interaction.


References

  1. (a) R. W. Hendrix, J. Mol. Biol., 1979, 129, 375 CrossRef CAS; (b) G. N. Chandrasekhar, K. Tilly, C. Woolford, R. Hendrix and C. Georgopoulos, J. Biol. Chem., 1986, 261, 12 414 CAS; (c) A. Azem, M. Kessel and P. Goloubinoff, Science, 1994, 265, 653 CAS; (d) M. Schmidt, K. Rutkat, R. Rachel, G. Pfeifer, R. Jaenicke, P. Viitanen, G. Lorimer and J. Buchner, Science, 1994, 265, 656 CAS; (e) A. Engel, M. K. Hayer-Hartl, K. N. Goldie, G. Pfeifer, R. Hegerl, S. Müller, A. C. R. da Silva, W. Baumeister and F.-U. Hartl, Science, 1995, 269, 832 CAS.
  2. H. R. Saibil, D. Zheng, A. M. Roseman, A. S. Hunter, G. M. F. Watson, S. Chen, A. auf der Mauer, B. P. O'Hara, S. P. Wood, N. H. Mann, L. K. Barnett and R. J. Ellis, Curr. Biol., 1993, 3, 265 CrossRef CAS.
  3. S. Chen, A. M. Roseman, A. S. Hunter, S. P. Wood, S. G. Burston, N. A. Ranson, A. R. Clarke and H. R. Saibil, Nature, 1994, 371, 261 CrossRef CAS.
  4. K. Braig, Z. Otwinowski, R. Hegde, D. C. Boisvert, A. Joachimiak, A. L. Horwich and P. B. Sigler, Nature, 1994, 371, 578 CrossRef CAS.
  5. J. F. Hunt, A. J. Weaver, S. J. Landry, L. Gierasch and J. Deisenhofer, Nature, 1996, 379, 37 CrossRef CAS.
  6. A. D. Miller, K. Maghlaoui, G. Albanese, D. A. Kleinjan and C. Smith, Biochem. J., 1993, 291, 139 CAS.
  7. (a) R. Zahn and A. Plückthun, Biochemistry, 1992, 31, 3249 CrossRef CAS; (b) N. A. Ranson, N. J. Dunster, S. G. Burston and A. R. Clarke, J. Mol. Biol., 1995, 250, 581 CrossRef CAS.
  8. R. A. Staniforth, A. Cortes, S. G. Burston, T. Atkinson, J. J. Holbrook and A. R. Clarke, FEBS Lett., 1994, 344, 129 CrossRef CAS.
  9. T. E. Gray and A. R. Fersht, J. Mol. Biol., 1993, 232, 1197 CrossRef CAS.
  10. (a) G. S. Jackson, R. A. Staniforth, D. J. Halsall, T. Atkinson, J. J. Holbrook, A. R. Clarke and S. G. Burston, Biochemistry, 1993, 32, 2554 CrossRef CAS; (b) M. J. Todd, P. V. Viitanen and G. H. Lorimer, Science, 1994, 265, 659 CrossRef CAS.
  11. J. Martin, M. Mayhew, T. Langer and F.-U. Hartl, Nature, 1993, 366, 228 CrossRef CAS.
  12. J. S. Weissman, C. M. Hohl, O. Kovalenko, Y. Kashi, S. Chen, K. Braig, H. R. Saibil, W. A. Fenton and A. L. Horwich, Cell, 1995, 83, 577 CrossRef CAS.
  13. (a) J. S. Weissman, Y. Kashi, W. A. Fenton and A. L. Horwich, Cell, 1994, 78, 693 CrossRef CAS; (b) R. Zahn, C. Spitzfaden, M. Ottiger, K. Wüthrich and A. Plückthun, Nature, 1994, 368, 261 CrossRef CAS; (c) H. Taguchi and M. Yoshida, FEBS Lett., 1995, 359, 195 CrossRef CAS; (d) G. Tian, I. E. Vainberg, W. D. Tap, S. A. Lewis and N. J. Cowan, J. Biol. Chem., 1995, 270, 23910 CrossRef CAS; (e) F. J. Corrales and A. R. Fersht, Proc. Natl. Acad. Sci., USA, 1995, 92, 5326 CAS; (f) R. Hlodan, P. Tempst and F.-U. Hartl, Nature Struct. Biol., 1995, 2, 587 Search PubMed.
  14. R. A. Staniforth, S. G. Burston, T. Atkinson and A. R. Clarke, Biochem. J., 1994, 300, 651 CAS.
  15. H. Edelhoch, Biochemistry, 1967, 6, 1948 CrossRef CAS.
  16. C. F. Chignell, Mol. Pharmacol., 1969, 5, 244 Search PubMed.
  17. H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc., 1949, 71, 2703 CrossRef CAS.
  18. K. A. Connors, Binding Constants: The Measurement of Molecular Complex Stability, Wiley, New York, 1987 Search PubMed.
  19. L. Brand and J. R. Gohlke, Ann. Rev. Biochem., 1972, 41, 843 Search PubMed.
  20. S. J. Landry and L. M. Gierasch, Biochemistry, 1991, 30, 7359 CrossRef CAS.
  21. J. S. Coleman, L. P. Varga and S. H. Mastin, Inorg. Chem, 1970, 9, 1015 CrossRef CAS.
  22. P. M. Horowitz, S. Hua and D. L. Gibbons, J. Biol. Chem., 1995, 270, 1535 CrossRef CAS.
  23. H. F. Rosenberg, S. J. Ackerman and D. G. Tenen, J. Biol. Chem., 1993, 268, 4499 CAS.
  24. G. C. Kresheck, L. B. Vitello and J. E. Erman, Biochemistry, 1995, 34, 8398 CrossRef CAS.
  25. J. C. Lee and S. N. Timasheff, Biochemistry, 1977, 16, 1754 CrossRef CAS.
  26. J. M. Sturtevant, Proc. Natl. Acad. Sci., USA, 1977, 74, 2236 CAS.
  27. J. H. Ha, R. S. Spolar and M. T. Record Jr., J. Mol. Biol., 1989, 209, 801 CrossRef CAS.
  28. M. Schmidt and J. Buchner, J. Biol. Chem., 1992, 267, 16829 CAS.
  29. P. V. Viitanen, A. A. Gatenby and G. H. Lorimer, Protein Science, 1992, 1, 363 Search PubMed.
  30. J. P. Hutchinson, T. S. H. El-Thaher and A. D. Miller, Biochem. J., 1994, 302, 405 CAS.
  31. (a) G. Richarme and M. Kohiyama, J. Biol. Chem., 1994, 269, 7095 CAS; (b) W. A. Fenton, Y. Kashi, K. Furtak and A. L. Horwich, Nature, 1994, 371, 614 CrossRef CAS; (c) R. Zahn, S. E. Axmann, K.-P. Rücknagel, E. Jaeger, A. A. Laminet and A. Plückthun, J. Mol. Biol., 1994, 242, 150 CrossRef CAS; (d) Z. Lin, F. P. Schwarz and E. Eisenstein, J. Biol. Chem., 1995, 270, 1011 CrossRef CAS.
  32. M. K. Hayer-Hartl, J. J. Ewbank, T. E. Creighton and F.-U. Hartl, EMBO J., 1994, 13, 3192 CAS.
  33. J. F. Eccleston, K. J. M. Moore, L. Morgan, R. H. Skinner and P. N. Lowe, J. Biol. Chem., 1993, 268, 27012 CAS.
  34. L. S. Itzhaki, D. E. Otzen and A. R. Fersht, Biochemistry, 1995, 34, 14581 CrossRef CAS.
  35. (a) T. E. Gray, J. Eder, M. Bycroft, A. G. Day and A. R. Fersht, EMBO J., 1993, 12, 4145 CAS; (b) C. W. Dessauer and S. G. Bartlett, J. Biol. Chem., 1994, 269, 19766 CAS; (c) J. R. Mattingly, Jr, A. Iriarte and M. Martinez-Carrion, J. Biol. Chem., 1995, 270, 1138 CrossRef CAS.
  36. A. Okazaki, T. Ikura, K. Nikaido and K. Kuwajima, Nature Struct. Biol., 1994, 1, 439 Search PubMed.
  37. G. C. Flynn, C. J. M. Beckers, W. A. Baase and F. W. Dahlquist, Proc. Natl. Acad., Sci., USA, 1993, 90, 10826 CAS.
  38. (a) H. Lilie and J. Buchner, Proc. Natl., Acad. Sci., USA, 1995, 92, 8100 CAS; (b) K. E. Smith and M. T. Fisher, J. Biol. Chem., 1995, 270, 21517 CrossRef CAS.
  39. C. V. Robinson, M. Groβ, S. J. Eyles, J. J. Ewbank, M. Mayhew, F.-U. Hartl, C. M. Dobson and S. E. Radford, Nature, 1994, 372, 646 CrossRef CAS.
  40. J. P. Hutchinson, C. Smith, T. S. H. El-Thaher and A. D. Miller, in Perspectives on protein engineering, ed. M. J. Geisow, Mayflower Worldwide, Birmingham, UK, 1995, pp. 287–291 Search PubMed.
  41. Y. Wang and H. Weiner, Biochemistry, 1994, 33, 12 860 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.