Effect of alkyl chain length on self-preorganization of artificial nucleobase receptors

(Note: The full text of this document is currently only available in the PDF Version )

Yasuhisa Kuroda, Juha M. Lintuluoto and Hisanobu Ogoshi


Abstract

Flexible receptors, having two uracil moieties connected through alkyl spacers of different lengths, exhibit intramolecular equilibria between two states in CDCl3, CD2Cl2 and (CDCl2)2. The intramolecularly hydrogen bonded state (closed form) is shown to bind more strongly to adenine base by Watson–Crick and Hoogsteen base pairing than the non-hydrogen bonded state (open form) above 298 K. The closed forms of flexible receptors take advantage of their small entropy loss upon complexation (-2 to -37 J K-1 mol-1); this is understood to be due to their self-preorganization, where closed forms are structurally similar to their complexed forms. Flexible receptors show high selectivity towards the adenine base; no binding towards other natural nucleobases is observed in 1H NMR studies. The observed selectivity shows that a hydrogen bonding system containing a base triplet is potentially a superior molecular recognition site for nucleobases compared with duplex base pair systems.


References

  1. (a) F. Vögtle and D. J. Cram, in Host Guest Complex Chemistry I-II, ed. F. Vögtle, Springer, Berlin, Heidelberg, 1981 Search PubMed; (b) D. J. Cram and G. M. Lein, J. Am. Chem. Soc., 1985, 107, 3657 CrossRef CAS.
  2. (a) D. J. Cram, Angew. Chem., Int. Ed. Engl., 1988, 27, 1009 CrossRef; (b) H. Ogoshi, H. Hatakeyama, J. Kotani, A. Kawashima and Y. Kuroda, J. Am. Chem. Soc., 1991, 113, 8181 CrossRef CAS; (c) Y. Kuroda, Y. Kato, T. Higashioji and H. Ogoshi, Angew. Chem., Int. Ed. Engl., 1993, 32, 723 CrossRef; (d) S. Goswami, A. D. Hamilton and D. Van Engen, J. Am. Chem. Soc., 1989, 111, 3425 CrossRef CAS; (e) M. M. Conn, G. Deslongchamps, J. de Mendoza and J. Rebek, Jr., J. Am. Chem. Soc., 1993, 115, 3548 CrossRef; (f) S. C. Hirst and A. D. Hamilton, Tetrahedron Lett., 1990, 31, 2401 CrossRef CAS; (g) S. C. Zimmerman, C. M. Vanzyl and G. S. Hamilton, J. Am. Chem. Soc., 1989, 111, 1373 CrossRef CAS; (h) Y. Aoyama, M. Asakawa, Y. Matsui and H. Ogoshi, J. Am. Chem. Soc., 1991, 113, 6233 CrossRef CAS; (i) V. Hedge, C.-Y. Hung, P. Madhukar, R. Cunningham, T. Höpfner and R. P. Thummel, J. Am. Chem. Soc., 1993, 115, 782 CrossRef; (j) C.-Y. Huang, L. A. Cabell and E. V. Anslyn, J. Am. Chem. Soc., 1994, 116, 2778 CrossRef CAS; (k) B. R. Peterson and F. Diederich, Angew. Chem., Int. Ed. Engl., 1994, 33, 1625 CrossRef; (l) R. Güther, M. Nieger and F. Vögtle, Angew. Chem., Int. Ed. Engl., 1993, 32, 601 CrossRef; (m) M. D. Cowart, I. Sucholeiki, R. R. Bukownik and C. S. Wilcox, J. Am. Chem. Soc., 1988, 110, 6204 CrossRef CAS.
  3. L. W. Guddat, L. Shan, J. M. Anchin, D. S. Linthicum and A. B. Edmundson, J. Mol. Biol., 1994, 236, 247 CrossRef CAS.
  4. S. Nakagawa and H. Umeyama, FEBS Lett., 1982, 139, 181 CrossRef CAS.
  5. R. S. Spolar and M. T. Record, Jr., Science, 1994, 263, 777 CAS.
  6. A. Wishnia, Biochemistry, 1969, 8, 5070 CrossRef CAS.
  7. J. Baldwin and C. Chothia, J. Mol. Biol., 1979, 129, 175 CrossRef CAS.
  8. B. R. Gelin, A. W.-M. Lee and M. Karplus, J. Mol. Biol., 1983, 171, 489 CrossRef CAS.
  9. R. G. Shulman, J. J. Hopfield and S. Ogawa, Quart. Rev. Biophys., 1975, 8, 325 CAS.
  10. S. C. Zimmerman and C. M. VanZyl, J. Am. Chem. Soc., 1987, 109, 7894 CrossRef CAS.
  11. T. Tjivikua, G. Deslongchamps and J. Rebek, Jr., J. Am. Chem. Soc., 1990, 112, 8408 CrossRef CAS.
  12. Y. Kuroda, J. M. Lintuluoto and H. Ogoshi, Tetrahedron Lett., 1994, 35, 3729 CrossRef CAS.
  13. B. Castro, J.-R. Dormoy, B. Dourtoglou, G. Evin, C. Selve and J.-C. Ziegler, Synthesis, 1976, 751 CrossRef CAS.
  14. Within this temperature range, the chemical shift changes for the olefinic protons H5 and H6 are negligibly small (<0.05 ppm). See Figs. 4 and 7 also.
  15. D. F. Schall and G. W. Gokel, J. Am. Chem. Soc., 1994, 116, 6089 CrossRef CAS.
  16. About Dreiding force field, see: S. L. Mayo, B. D. Olafson and W. A. Goddard III, J. Phys. Chem., 1990, 94, 8897 Search PubMed.
  17. Receptors 1–7 in this work bind stronger through closed form above room temp.
  18. Closed form can resist to bind water to be able to bind substrate, see: J. C. Adrian and C. S. Wilcox, J. Am. Chem. Soc., 1992, 114, 1398 Search PubMed.
  19. L. D. Williams, B. Chawla and B. R. Shaw, Biopolym, 1087, 26, 591 Search PubMed.
  20. L. Williams, Dean, Shaw and B. Ramsay, Proc. Natl. Acad. Sci. USA, 1987, 84, 1779 Search PubMed.
  21. N. Williams, Gupta, L. Williams, Dean and B. R. Shaw, J. Am. Chem. Soc., 1989, 111, 7205 Search PubMed.
  22. G. A. Jeffrey and W. Sanger, Hydrogen Bonding in Biological Structures, Springer, Berlin, Heidelberg, 1991 Search PubMed.
  23. H. P. M. Fromageot, B. E. Griffin, C. B. Reese and J. E. Sulston, Tetrahedron, 1967, 23, 2315 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.