Acylphosphonate hemiketals—formation rate and equilibrium. The electron-withdrawing effect of dimethoxyphosphinyl group

(Note: The full text of this document is currently only available in the PDF Version )

Jehoshua Katzhendler, Israel Ringel, Rafik Karaman, Hisham Zaher and Eli Breuer


Abstract

Examination of alcoholic solutions of dimethyl acetylphosphonate (1) and dimethyl benzoylphosphonate (2) by 31P NMR spectroscopy reveals the presence of considerable amounts of hemiketals. Because of the great difference between the 31P chemical shifts of acylphosphonates (ca. 0 ppm) and their hemiketals (17–21 ppm), 31P NMR spectroscopy is a uniquely suitable method for studying the rates and equilibria of hemiketal formation of acylphosphonates with different alcohols. The equilibrium constants Kf, K′f (K′f = Kf [ROH]), pseudo-first-order rate constants k′f, the second order rate constants, kf for hemiketal formation from dimethyl acetylphosphonate with various alcohols, as well as the reverse reaction rate constants, kr to starting materials, were determined. The kinetic isotope effect of 2.8 for the forward reaction kf (EtOH addition) and the backward reaction kr indicates a general catalysis pathway. On the other hand, the calculated values of the enthalpies of activation ΔH[hair space] = 10.37 kcal mol-1 (forward), ΔH[hair space] = 13.66 kcal mol-1 (backward) and the entropies of activation, ΔS[hair space] = -17.25 cal mol-1 K-1 (forward), ΔS[hair space] = -9.82 cal mol-1 K-1 (backward) are not in accord with high molecularity of the reaction (1 cal = 4.184 J). Our analysis led to the conclusion that this is probably due to the fact that the transition state is mainly reactant-like with the development of only limited extent of bond formation. Various plausible reaction pathways for hemiketal formation are discussed. In addition, we have calculated the value of 2.65 σ* for the P(O)(OMe)2 group based on proton affinity obtained from heats of formation (ΔHf) of applying the MNDO techniques. The following linear correlation between pKa values and PA values of hemiketals of the form (Me)(R)C(OH)(OCH2X) was developed: pKa = PA - 356.58 + 9.18 [σ*(Me) + σ*(R) 0.2σ*(X)].


References

  1. Acylphosphonate reviews: Yu. A. Zhdanov, L. A. Uzlova and Z. I. Glebova, Russ. Chem. Rev. (Engl. Transl.), 1980, 94, 843 Search PubMed; E. Breuer, in The chemistry of organophosphorus compounds, ed. F. Hartley, Wiley, Chichester, 1996, vol. 4, pp. 653–729 Search PubMed.
  2. (a) E. Breuer, R. Karaman, H. Leader, A. Goldblum and R. Moshe, Phosphorus and Sulfur, 1987, 30, 113 Search PubMed; (b) E. Breuer, R. Karaman, H. Leader and A. Goldblum, Phosphorus and Sulfur, 1987, 33, 61 Search PubMed; (c) E. Breuer, R. Karaman, A. Goldblum and H. Leader, J. Chem. Soc., Perkin Trans. 2, 1988, 2029 RSC; (d) R. Karaman, A. Goldblum, E. Breuer and H. Leader, J. Chem. Soc., Perkin Trans. 1, 1989, 765 RSC.
  3. (a) E. Breuer, R. Karaman, D. Gibson, H. Leader and A. Goldblum, J. Chem. Soc., Chem. Commun., 1988, 504 RSC; (b) E. Breuer, R. Karaman, A. Goldblum, D. Gibson, H. Leader, B. V. L. Potter and J. H. Cummins, J. Chem. Soc., Perkin Trans. 1, 1988, 3047 RSC; (c) E. Breuer, R. Karaman, H. Leader and A. Goldblum, J. Chem. Soc., Chem. Commun., 1987, 671 RSC; (d) J. Katzhendler, R. Karaman, D. Gibson, H. Leader and E. Breuer, J. Chem. Soc., Perkin Trans. 2, 1989, 2, 589 RSC.
  4. (a) G. Golomb, A. Schlossman, H. Saadeh, M. Levi, J. M. Van Gelder and E. Breuer, Pharm. Res., 1992, 9, 143 CrossRef CAS; (b) G. Golomb, A. Schlossman, Y. Eitan, H. Saadeh, J. M. Van Gelder and E. Breuer, J. Pharm. Sci., 1992, 81, 1004 CAS; (c) E. Breuer, G. Golomb, A. Hoffman, A. Schlossman, J. M. van Gelder, H. Saadeh, M. Levi and Y. Eitan, Phosphorus, Sulfur, and Silicon, 1993, 76, 167; (d) J. M. van Gelder, E. Breuer, A. Ornoy, A. Schlossman, N. Patlas and G. Golomb, Bone, 1995, 16, 511 CrossRef CAS.
  5. (a) R. Kluger and J. Chin, J. Am. Chem. Soc., 1978, 100, 7382 CrossRef CAS; (b) R. Kluger, D. Pike and J. Chin, Can. J. Chem., 1978, 56, 1972; (c) A. Narayanan and K. D. Berlin, J. Am. Chem. Soc., 1979, 101, 109 CrossRef CAS; (d) K. D. Berlin and A. Taylor, J. Am. Chem. Soc., 1964, 86, 3862 CrossRef CAS; (e) E. S. Krol, J. M. Davis and G. R. J. Tatcher, J. Chem. Soc., Chem. Commun., 1991, 118 RSC.
  6. (a) M. Uieara, C. Zucco, D. Zanette, M. C. Rezende and F. Nome, J. Chem. Soc., Perkin Trans. 2, 1987, 175 RSC; (b) J. Druzian, C. Zucco, M. C. Rezende and F. Nome, J. Org. Chem., 1989, 59, 4767 CrossRef; (c) C. Gustafson and M. Johanson, Acta Chem. Scand., 1948, 2, 42.
  7. J. March, Advanced organic chemistry, McGraw-Hill, New York, 1977, 2nd edn., p. 575 Search PubMed.
  8. (a) K. D. Berlin, R. T. Claunch and E. T. Gaudy, J. Org. Chem., 1968, 33, 3090 CrossRef CAS; (b) G. Holan, W. M. P. Johnson, K. Rihs and C. T. Virgona, Pestic. Sci., 1984, 15, 361 Search PubMed.
  9. There are many precedents which show that aldehydes and ketones bearing electron-withdrawing substituents strongly favour the hydrated (gem-diol) form.10 Some of these are chloral,11 fluoral12 and trifluoroacetone hydrate.13 This is also the case with transient tetrahedral intermediates formed from trifluoroacetic esters14,22e and amides.15.
  10. (a) R. P. Bell, Adv. Phys. Chem., 1966, 4, 1 Search PubMed; (b) S. Patai, The Chemistry of Carbonyl Group, vol. II, Interscience, London, 1970, p. 1 Search PubMed; (c) J. E. Meany and Y. Pocker, J. Am. Chem. Soc., 1991, 113, 6155 CrossRef CAS; (d) P. Greenzaid, J. Org. Chem., 1973, 18, 3164 CrossRef; (e) R. P. Bell and P. E. Sorensen, J. Chem. Soc., Perkin Trans. 2, 1976, 1594 RSC.
  11. M. M. Davies, Trans. Faraday Soc., 1940, 86, 1114 RSC.
  12. H. Shechter and F. Courad, J. Am. Chem. Soc., 1950, 72, 3371 CrossRef CAS.
  13. A. L. Henne, M. S. Newman, L. L. Quill and R. A. Staniforth, J. Am. Chem. Soc., 1947, 69, 1819 CrossRef CAS.
  14. (a) F. Swarts, Bull. Soc. Chim. Belg., 1929, 35, 414; (b) M. L. Bender, J. Am. Chem. Soc., 1953, 75, 5986 CrossRef CAS; (c) A. Moffat and H. Hunt, J. Am. Chem. Soc., 1959, 81, 2082 CrossRef CAS; J. Chem. Soc., Chem. Commun., 1977, 857 Search PubMed.
  15. (a) G. Fraenkel and D. Watson, J. Am. Chem. Soc., 1976, 97, 231; (b) A. Cipiciani, P. Linda and G. Savelli, J. Chem. Soc., Chem. Commun., 1977, 857 RSC.
  16. (a) R. Wolfenden, Ann. Rev. Biophys. Bioeng., 1976, 5, 271 Search PubMed; (b) R. Wolfenden and L. Frick, in Enzyme Mechanisms, eds. M. I. Page and A. Williams, 1987, RSC, London, p. 97 Search PubMed; (c) A. Tramontano, A. A. Amman and R. A. Lerner, J. Am. Chem. Soc., 1988, 110, 2282 CrossRef CAS; (d) J. Jacobs, P. G. Schultz, R. Sugasawara and M. Powell, J. Am. Chem. Soc., 1987, 109, 2174 CrossRef CAS; (e) A. P. Kaplan and P. A. Bartlett, Biochemistry, 1991, 30, 8165 CrossRef CAS.
  17. D. H. Aue and M. T. Bowers, Gas phase ion chemistry, ed. M. T. Bowers, Academic Press, New York, 1979, vol. 2, ch. 9 Search PubMed.
  18. S. Olivella, F. Urpi and J. Vilarrassa, J. Comput. Chem., 1984, 5, 230 CrossRef CAS.
  19. M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 1977, 99, 4899 CrossRef CAS.
  20. (a) A. Goldblum, J. Comput. Chem., 1987, 8, 835 CrossRef CAS; (b) K. Ya. Burstein and A. N. Isaev, Theor. Chim. Acta, 1984, 64, 397 CrossRef CAS.
  21. R. Fletcher, Comput. J., 1970, 13, 317 Search PubMed.
  22. (a) S. L. Johnson, Adv. Phys. Org. Chem., 1967, 5, 237 CAS; (b) W. P. Jencks, Catalysis in chemistry and enzymology, McGraw-Hill, New York, 1968, pp. 354–463 Search PubMed; (c) T. C. Bruice and S. J. Benkovic, Bioorganic mechanisms, vol. 1, W. A. Benjamin, Inc., New York, 1966, pp. 1–211 Search PubMed; (d) M. L. Bender, Chem. Rev., 1960, 60, 53 CrossRef CAS; see also Mechanism of homogeneous catalysis from proton to proteins, Wiley, New York, 1971, p. 108 Search PubMed; (e) B. Capon, A. K. Ghosh and D. McL. A. Grieve, Acc. Chem. Res., 1981, 14, 306 CrossRef CAS.
  23. D. J. Martin and C. E. Griffin, J. Org. Chem., 1965, 30, 4034 CAS.
  24. L. T. Kanerva and E. K. Euranto, J. Chem. Soc., Perkin Trans 2, 1987, 441 RSC.
  25. H. Dahn, P. Pechy and V. V. Toan, Magn. Reson. Chem., 1990, 28, 883 CAS.
  26. H. Duddeck and R. Lecht, Phosphorus and Sulfur, 1987, 29, 169 Search PubMed.
  27. T. Fujita and T. Nishioka, Progress in physical organic chemistry, ed. R. W. Taft, Wiley, New York, 1976, 12, 49 Search PubMed.
  28. J. Hine and G. F. Koser, J. Org. Chem., 1971, 36, 1348 CrossRef CAS.
  29. L. H. Funderburk, L. Aldwin and W. P. Jencks, J. Am. Chem. Soc., 1978, 98, 5444 CrossRef.
  30. (a) J. L. Palmer and W. P. Jencks, J. Am. Chem. Soc., 1980, 102, 6472 CrossRef CAS; (b) P. E. Sorensen and W. P. Jencks, J. Am. Chem. Soc., 1987, 109, 4675 CrossRef CAS; (c) P. E. Sorensen, K. J. Pedersen, P. R. Pedersen, V. M. Kanagasabapapathy and R. A. McClelland, J. Am. Chem. Soc., 1988, 110, 5118 CrossRef.
  31. C. A. Coleman and C. J. Murry, J. Am. Chem. Soc., 1991, 113, 1677 CrossRef CAS.
  32. B. Capon, M. I. Dosunmu and M. de N. de Matos Sanchez, Adv. Phys. Org. Chem., 1985, 21, 37 CAS.
  33. (a) J. M. Sayer and W. P. Jencks, J. Am. Chem. Soc., 1973, 95, 5637 CrossRef CAS; (b) H. Fischer, F. X. DeCandis, S. D. Ogden and W. P. Jencks, J. Am. Chem. Soc., 1980, 102, 1340 CrossRef CAS.
  34. J. P. Fox, M. I. Page, A. Satterthwait and W. P. Jencks, J. Am. Chem. Soc., 1972, 94, 4731 CrossRef CAS.
  35. I. H. Williams, J. Am. Chem. Soc., 1987, 109, 6299 CrossRef CAS.
  36. The solvent isotope effect for water reaction in ester hydrolysis was found to be in the range of k(H2O)/k(D2O)= 3.6–5.3. D. Stefanidis and W. P. Jencks, J. Am. Chem. Soc., 1993, 115, 6045 Search PubMed.
  37. K. Bowden, Adv. Phys. Org. Chem., 1993, 28, 171 CAS.
  38. H. Neuvonen, J. Chem. Soc., Perkin Trans. 2, 1990, 669 RSC.
  39. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, VCH, Weinheim, 2nd edn., 1988, p. 408 Search PubMed.
  40. L. T. Kanerva, J. Chem. Soc., Perkin Trans. 2, 1986, 1433 RSC.
  41. H. Neuvonen, J. Chem. Soc., Perkin Trans. 2, 1986, 1141 RSC.
  42. P. Greenzaid, Z. Luz and D. Samuel, J. Am. Chem. Soc., 1967, 89, 749 CrossRef CAS.
  43. J. Fastrez, J. Am. Chem. Soc., 1977, 99, 7004 CrossRef CAS.
  44. J. P. Guthrie, Can. J. Chem., 1975, 53, 898 CAS.
  45. M. R. Crampton, J. Chem. Soc., Perkin Trans. 2, 1975, 185 RSC.
  46. D. L. Leussing, J. Org. Chem., 1990, 55, 666 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.