Spiro-λ4-sulfanes with O-ligands of different electronegativity in axial positions. A comparison of CH2O–SIV–OCO and CH2O–S+IV · · · O[double bond, length as m-dash]C bond systems

(Note: The full text of this document is currently only available in the PDF Version )

Dénes Szabó, István Kapovits, Gyula Argay, Mátyás Czugler, Alajos Kálmán and Tibor Koritsánszky


Abstract

Two novel diaryl(alkoxy)(acyloxy)spiro-λ4-sulfanes (3 and 5) exhibiting isomerism in relation to swapping of the five- and six-membered spiro-rings and two analogous cyclic alkoxysulfonium salts (4 and 6) with intramolecular S · · · O interaction have been prepared and their molecular structures determined by X-ray diffraction. In all cases the arrangement of the ligands about the central sulfur atom shows a slightly distorted trigonal bipyramidal (TBP) geometry. In unsymmetrical spiro-λ4-sulfanes the S–O(alkoxy) and the considerably polarized S–O(acyloxy) bond lengths are 1.686(2) and 2.109(2) Å for 3 and 1.683(2) and 2.047(2) Å for 5, respectively. In the analogous cyclic sulfonium salts the corresponding interatomic distances are 1.645(3) and 2.255(3) Å for 4 and 1.616(2) and 2.349(2) Å for 6, respectively. The sums of the individual S–O interatomic distances found in the investigated spiro-λ4-sulfanes and cyclic alkoxysulfonium salts are 3.795(2) and 3.730(2) Å for 3 and 5, whereas they are 3.900(3) and 3.965(2) Å for 4 and 6, showing a significant difference between the two intervals. The individual S–O(alkoxy), S–O(acyloxy), S · · · O(carbamoyl) and S–Car bond lengths, as well as the Car–S–Car bond angles are compared and discussed. The five- and six-membered spiro-rings assume a flattened envelope and a somewhat inverted half-chair conformation, respectively. The almost linear O–S–O bond system is not affected significantly by the different size of the spiro-rings except the case of sulfur–oxygen nonbonded interaction.


References

  1. L. J. Adzima, E. N. Duesler and J. C. Martin, J. Org. Chem., 1977, 42, 4001 CrossRef CAS .
  2. P. Livant and J. C. Martin, J. Am. Chem. Soc., 1977, 99, 5761 CrossRef CAS .
  3. W. Y. Lam, E. N. Duesler and J. C. Martin, J. Am. Chem. Soc., 1981, 103, 127 CrossRef CAS .
  4. D. Szabó, I. Kapovits, Á. Kucsman, P. Huszthy, Gy. Argay, M. Czugler, V. Fülöp, A. Kálmán, T. Koritsánszky and L. Párkányi, J. Mol. Struct., 1993, 300, 23 CrossRef CAS .
  5. D. Szabó, I. Kapovits, Á. Kucsman, V. Fülöp, M. Czugler and A. Kálmán, Struct. Chem., 1990, 1, 305 CrossRef CAS .
  6. D. Szabó, I. Kapovits, Á. Kucsman, M. Czugler, V. Fülöp and A. Kálmán, Struct. Chem., 1991, 2, 529 CrossRef CAS .
  7. J. G. Ángyán, R. A. Poirier, Á. Kucsman and I. G. Csizmadia, J. Am. Chem. Soc., 1987, 109, 2237 CrossRef CAS .
  8. D. Szabó and I. Kapovits, Sulf. Lett., 1991, 13, 37 Search PubMed .
  9. I. Kapovits, J. Rábai, F. Ruff and Á. Kucsman, Tetrahedron, 1979, 35, 1869 CrossRef CAS .
  10. R. J. Bailey, P. J. Card and H. Schechter, J. Am. Chem. Soc., 1983, 105, 6096 CrossRef CAS .
  11. K. Pelz, I. Jirkovsky, E. Adlerova, J. Metysova and M. Protiva, Collect. Czech. Chem. Commun., 1968, 33, 1895 CAS .
  12. Á. Kucsman, I. Kapovits and B. Tanács, Tetrahedron, 1962, 18, 79 CrossRef .
  13. I. Kapovits, J. Rábai, D. Szabó, K. Czakó, Á. Kucsman, Gy. Argay, V. Fülöp, A. Kálmán, T. Koritsánszky and L. Párkányi, J. Chem. Soc., Perkin Trans. 2, 1993, 847 RSC .
  14. L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York, 1960, 3rd edn., p. 221 Search PubMed .
  15. A. Kálmán, Croat. Chem. Acta, 1993, 66, 519 Search PubMed .
  16. Á. Kucsman and I. Kapovits, in Organic Sulfur Chemistry: Theoretical and Experimental Advances, ed. F. Bernardi, I. G. Csizmadia and A. Mangini, Elsevier, Amsterdam, 1985, p. 185 Search PubMed .
  17. F. H. Allen, O. Kennard, D. G. Watson, L. Branner, A. G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1 RSC .
  18. D. Cremer and J. A. Pople, J. Am. Chem. Soc., 1975, 97, 1354 CrossRef CAS .
  19. R. Bucourt, Top. Stereochem., 1974, 8, 159 Search PubMed .
  20. Enraf-Nonius, SDP-Plus Structure Determination Package, Enraf-Nonius, Delft, The Netherlands, 1983 .
  21. MOLEN, An Interactive Structure Solution Procedure, Enraf-Nonius, Delft, The Netherlands, 1990 .
  22. P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J.-P. Declercq and M. M. Woolfson, MULTAN82, A System of Computer Programs for the Automatic Solution of Crystal Structures for X-ray Diffraction Data, Universities of York, England and Louvain, Belgium, 1982 .
  23. G. M. Sheldrick, SHELXS(86), Acta Crystallogr., Sect. B, 1990, 46, 467 CrossRef .
  24. G. M. Sheldrick, SHELXL(93) Program for Crystal Structure Refinement, University of Göttingen, Germany, 1994 .
Click here to see how this site uses Cookies. View our privacy policy here.