Conformational analysis. Part 29.1 The conformational analysis of 2-substituted fluoro- and trifluoromethyl-benzaldehydes, acetophenones and methyl benzoates by the lanthanide induced shift (LIS) technique

(Note: The full text of this document is currently only available in the PDF Version )

Raymond J. Abraham, Simone Angioloni, Mark Edgar and Fernando Sancassan


Abstract

An improved LIS technique, using, Yb(fod)3 to obtain the paramagnetic induced shifts of all the spin ½ nuclei in the molecule, together with complexation shifts obtained by the use of Lu(fod)3 has been used to investigate conformational isomerism in 2-fluorobenzaldehyde 1, 2-fluoroacetophenone 2, methyl 2-fluorobenzoate 3 and the corresponding 2-trifluoromethyl compounds 4, 5 and 6. The use of fluorine LIS in these molecules was first established by analysis of the LIS in 4-fluorobenzaldehyde 7 and 4-trifluoromethylbenzaldehyde 8 in which conformational isomerism is not possible and confirmed in subsequent analyses. It is shown that 19F LIS may be used with the same degree of confidence as the corresponding 1H and 13C LIS in theses molecules. Analysis of the LIS data was considered together with ab initio, modelling and solvation calculations to provide a comprehensive account of the conformer geometries and energies for these compounds in a variety of solvents. The 2-fluoro compounds are all planar, with the trans (C[double bond, length as m-dash]O[thin space (1/6-em)]·[thin space (1/6-em)]·[thin space (1/6-em)]·[thin space (1/6-em)]F) conformer always more stable, in 1 and 2 predominating in all but very polar solvents. In the corresponding 2-trifluoromethyl compounds both the cis and trans conformers of the aldehyde 4 are planar with the trans form predominating, but the ketone 5 is essentially in one orthogonal conformation and the ester 6 interconverting between two nonplanar conformations with the trans conformer predominant.


References

  1. R. J. Abraham, T. A. D. Smith and W. A. Thomas, J. Chem. Soc., Perkin Trans. 2, 1996, 1949 RSC.
  2. R. J. Abraham, S. Angiolini, M. Edgar and F. Sancassan, J. Chem. Soc., Perkin Trans. 2, 1995, 1973 RSC.
  3. F. Sancassan, G. Petrillo and R. J. Abraham, J. Chem. Soc., Perkin Trans. 2, 1995, 1965 RSC.
  4. R. J. Abraham, L. Pollock and F. Sancassan, J. Chem. Soc., Perkin Trans. 2, 1994, 2329 RSC.
  5. R. J. Abraham and I. S. Haworth, Magn. Reson. Chem., 1988, 26, 252 CAS.
  6. R. J. Abraham, H. A. Bergen and D. J. Chadwick, J. Chem. Soc., Perkin Trans. 2, 1983, 1161 RSC.
  7. R. J. Abraham, D. J. Chadwick and F. Sancassan, Tetrahedron, 1982, 38, 1458; 3245.
  8. J. Karabatos and F. M. Vane, J. Am. Chem. Soc., 1963, 85, 3886 CrossRef.
  9. T. Schaefer and R. Wasylishen, Can. J. Chem. Soc., 1971, 49, 3216 Search PubMed.
  10. E. Bock and E. Tomchuk, Can. J. Chem., 1972, 50, 2890 CAS.
  11. C. T. Aw, H. H. Huang and E. L. K. Tan, J. Chem. Soc., Perkin Trans. 2, 1972, 1638 RSC.
  12. T. Scheaffer and R. Wasylishen, Can. J. Chem., 1990, 68, 339.
  13. E. A. Bruce, G. L. D. Ritchie and A. J. Williams, Aust. J. Chem., 1974, 27, 1809 CAS.
  14. E. Bock, R. Wasylishen, B. E. Gaboury and E. Tomchuk, Can. J. Chem., 1973, 51, 1906 CAS.
  15. P. J. Krueger, Can. J. Chem., 1973, 51, 1363 CAS.
  16. W. Adcock and S. Q. A. Rizvi, Aust. J. Chem., 1973, 26, 2659 CAS.
  17. W. Adcock, D. G. Mathews and S. Q. A. Rizvi, Aust. J. Chem., 1971, 24, 1829 CAS.
  18. S. Angiolini, Tesi di Laurea, University of Genoa, 1994.
  19. R. H. Contreras, C. G. Giribet, M. A. Natiello, J. Perez, I. D. Rae and J. A. Wiegold, Aust. J. Chem., 1985, 38, 1779 CAS.
  20. W. B. Smith, D. L. Deavenport and A. M. Ihrig, J. Am. Chem. Soc., 1972, 94, 1959 CrossRef CAS.
  21. R. J. Abraham, J. Fisher and P. Loftus, Introduction to NMR Spectroscopy, Wiley, New York, 1988 Search PubMed.
  22. H. O. Kalinowski, S. Berger and S. Braun, C-13 NMR Spectroscopy, Wiley, NY, 1988 Search PubMed.
  23. M. Edgar, Ph.D. Thesis, University of Liverpool, 1994.
  24. GAUSSIAN 94 (Revision B2), GAUSSIAN 92 (Revision F.4), M. J. Frisch, G. W. Trucks, M. Head-Gordon, J. R. Cheeseman, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Blinkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. P. Stewart and J. A. Pople, Gaussian Inc., Pittsburgh, PA, 1992.
  25. W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1988 Search PubMed.
  26. A. Domenicano and P. Murray-Rust, Tetrahedron Lett., 1979, 2283 CrossRef CAS.
  27. G. Schultz, I. Hargittai and R. Seip, Z. Naturforsch, Teil A, 1981, 36, 669.
  28. PCMODEL. Serena Software, PO Box 3076, Bloomington, USA.
  29. R. J. Abraham, P. Leonard, T. A. D. Smith and W. A. Thomas, Magn. Reson. Chem., 1996, 34, 71 CrossRef CAS.
  30. R. J. Abraham, G. H. Grant, I. S. Haworth and P. E. Smith, J. Comp. Aided. Mol. Des., 1991, 5, 21 Search PubMed.
  31. R. Benassi, L. Schenetti and F. Taddei, J. Chem. Soc., Perkin Trans. 2, 1979, 545 RSC.
  32. A. L. Mclellan, Tables of Experimental Dipole Moments, vol. 3, Rahara Enterprises, 1989 Search PubMed.
  33. H. O. Kalinowski, S. Berger and S. Braun, C-13 NMR Spectroscopy, Wiley, New York, 1988, p. 313 Search PubMed.
  34. R. J. Abraham, H. A. Berger, D. J. Chadwick and F. Sancassan, J. Chem. Soc., Chem. Commun., 1982, 998 RSC.