Solvent effects in the β-(phosphatoxy)alkyl radical migration as revealed by deuterium labelling and 1H NMR spectroscopy

(Note: The full text of this document is currently only available in the PDF Version )

David Crich, Jaime Escalante and Xian-Yun Jiao


Abstract

It has been demonstrated through use of a deuterium labelled probe that the β-(phosphatoxy)alkyl radical migration of 1a, previously shown to be non-dissociative in benzene, occurs through a fragmentation recombination mechanism in the polar, protic solvent tert-butanol. Most likely the reaction occurs through the intermediacy of a contact ion pair which does not allow crossover with an external nucleophile. Parallel experiments for the β-(acyloxy)alkyl migration, however, provided no evidence for a dissociative mechanism in any of the solvents tested.


References

  1. D. Crich, Q. Yao and G. F. Filzen, J. Am. Chem. Soc., 1995, 117, 11 455 CrossRef CAS; D. Crich and X.-Y. Jiao, J. Am Chem. Soc., 1996, 118, 6666 CrossRef CAS.
  2. D. Crich and G. F. Filzen, J. Org. Chem., 1995, 60, 4834 CrossRef CAS.
  3. D. Crich and Q. Yao, Tetrahedron Lett., 1993, 34, 5677 CrossRef CAS.
  4. A. L. J. Beckwith and C. B. Thomas, J. Chem Soc., Perkin Trans. 2, 1973, 816 RSC; H.-G. Korth, R. Sustmann, K. S. Groninger, M. Leisung and B. Giese, J. Org. Chem., 1988, 53, 4364 CrossRef CAS; A. L. J. Beckwith and P. J. Duggan, J. Chem. Soc., Perkin Trans. 2, 1993, 1673 RSC.
  5. P. Kocovsky, I. Stary and F. Turecek, Tetrahedron Lett., 1986, 27, 1513 CrossRef CAS.
  6. L. R. C. Barclay, D. Griller and K. U. Ingold, J. Am. Chem. Soc., 1982, 104, 4399 CrossRef CAS; L. R. C. Barclay, J. Lusztyk and K. U. Ingold, J. Am. Chem. Soc., 1984, 106, 1793 CrossRef CAS.
  7. M. Sprecher, Chemtracts: Org. Chem., 1994, 7, 115 Search PubMed for fragmentations of β-(phosphatoxy)alkyl radicals see: B. Giese, X. Beyrich-Graf, J. Burger, Kesselhiem Kesselhiem, M. Senn and T. Schafer, Angew. Chem., Int. Ed. Engl., 1993, 32, 1742 Search PubMed.
  8. EPR spectroscopy of the cyclohexa-1,3-diene cation radical in a CFCl3 matrix at 77 K reveals four distinct hyperfine splittings indicative of a frozen half-chair conformation with two internal olefinic hydrogens, two terminal olefinic hydrogens and a pseudoequatorial and pseudo-axial hydrogen on each methylene. On warming to 130 K the four methylene hydrogens are found to be equivalent, indicating rapid conformational inversion on the EPR timescale at this temperature. M. Tabata and A. Lund, Chem. Phys., 1983, 75, 379 Search PubMed; T. Shibata, Y. Egawa, H. Kubodera and T. Kato, J. Chem. Phys., 1980, 73, 5963 CrossRef CAS.
  9. The actual barrier to inversion for the cyclohexadiene radical cation is not known but it is reasonable to assume that it will not be greater than the 3.1 kcal mol–1 measured by Raman spectroscopy, or 2.2 kcal mol–1 estimated by molecular mechanics calculations, for cyclohexadiene itself. L. A. Carreira, R. O. Carter and J. R. Durig, J. Chem Phys., 1973, 59, 812 Search PubMed; J. Kao, J. Am. Chem. Soc., 1987, 109, 3817 CrossRef CAS for an NMR investigation of cyclohexa-1,3-diene see W. Auf der Meyde and W. Luttke, Chem. Ber., 1978, 111, 2384 CrossRef CAS; for an overview of the conformational analysis of cyclohexa-1,3-diene see the chapters by P. W. RabideauA. SygulaK. B. Lipkowitz, in The Conformational Analysis of Cyclohexenes, Cyclohexadienes, and Related Hydroaromatic Compounds, ed. P. W. Rabideau, VCH, New York, 1989 Search PubMed.
  10. In addition to resonances at δ–0.67 and –1.01 (3a and 2a, respectively) significant peaks are observed at +1.80 (diethyl hydrogen phosphate) and –0.15 (unassigned) in the 31P NMR spectra (CDCl3) of the crude reaction mixtures.
  11. B. Giese and N. G. Almstead, Tetrahedron Lett., 1994, 35, 1677 CrossRef CAS.
  12. Blank experiments verified the stability of unlabelled 1b, 2b and 3b in all solvents employed.
  13. A. L. J. Beckwith and P. J. Duggan, J. Am. Chem. Soc., 1997, in the press Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.