(+)- and (-)-α-Pinene as chiral recognition probes with natural cyclodextrins and their permethylated derivatives. An aqueous NMR study

(Note: The full text of this document is currently only available in the PDF Version )

Antigone Botsi, Bruno Perly and Eugene Hadjoudis


Abstract

The binding of (1R)-(+)- and (1S[hair space])-(-)-α-pinene to α-, β- and γ-cyclodextrin and to the corresponding permethylated derivatives TMα-, TMβ- and TMγ-cyclodextrin, has been studied in aqueous solution by NMR spectroscopy. The stoichiometries and the association constants have been measured. The signals of both (+)- and (-)-α-pinene were found to follow the slow exchange, whereas those of the cyclodextrins the fast exchange regime, indicating that the type of exchange is independent of the magnitude of binding constants, which vary along the series, and also a result of other factors, in addition to the associated rate constants. The structures of the respective complexes have been derived from 2D ROESY experiments. The cyclodextrins preferentially bind with the (1S[hair space])-(-)-α-pinene, but only α-CD exhibits remarkable enantioselectivity. These observations show clearly that formation of a hydrogen bond or the presence of an aromatic ring, previously invoked as some of the requirements for enantioselectivity with CDs, are not necessary. In addition to enantioselectivity, site selectivity was also observed for α- and TMα-CD with the preferred (1S[hair space])-(-)-enantiomer, the stoichiometry being 2∶1 in both cases.


References

  1. (a) M. L. Hilton and D. W. Armstrong, in New trends in Cyclodextrins and Derivatives, ed. D. Duchêne, Editions de Santé, Paris, 1991, ch. 15, pp. 517–549 Search PubMed; (b) W. A. Köning, in New trends in Cyclodextrins and Derivatives, ed. D. Duchêne, Editions de Santé, Paris, 1991, ch. 16, pp. 551–594 Search PubMed.
  2. (a) K. Uekama, T. Imai, F. Hirayama, M. Otagiri, T. Hibi and M. Yamasaki, Chem. Lett., 1985, 61; (b) D. Greatbanks and R. Pickford, Magn. Reson. Chem., 1987, 25, 208 CAS; (c) A. Casy and A. Mercer, Magn. Reson. Chem., 1988, 26, 765 CAS; (d) A. Botsi, K. Yannakopoulou, E. Hadjoudis and B. Perly, J. Chem. Soc., Chem. Commun., 1993, 1085 RSC.
  3. (a) D. W. Armstrong, T. J. Ward, R. D. Armstrong and T. E. Beesley, Science, 1986, 232, 1132 CAS; (b) J. A. Hamilton and L. Chen, J. Am. Chem. Soc., 1988, 110, 5833 CrossRef CAS; (c) K. B. Lipkowitz, S. Raghothama and J. Yang, J. Am. Chem. Soc., 1992, 114, 1554 CrossRef CAS.
  4. A. Botsi, K. Yannakopoulou, E. Hadjoudis and B. Perly, Magn. Reson. Chem., 1996, 34, 419 CrossRef CAS.
  5. F. Djedaini and B. Perly, in New trends in Cyclodextrins and Derivatives, ed. D. Duchêne, Editions de Santé, Paris, 1991, ch. 6, pp. 215–246 Search PubMed.
  6. A. Botsi, K. Yannakopoulou and E. Hadjoudis, Carbohydr. Res., 1993, 241, 37 CrossRef CAS.
  7. A. Botsi, K. Yannakopoulou, E. Hadjoudis and B. Perly, J. Org. Chem., 1995, 60, 4017 CrossRef CAS.
  8. M. Suzuki, J. Szjetli and L. Szente, Carbohydr. Res., 1989, 192, 61 CrossRef CAS.
  9. R. J. Abraham, M. A. Cooper, J. R. Salmon and D. Whittaker, Org. Magn. Reson. (Magn. Reson. Chem.), 1972, 4, 489 Search PubMed.
  10. K. Laihia, E. Kolehmainen, P. Malkavaara, J. Korvola, P. Monttori and R. Kauppinen, Magn. Reson. Chem., 1992, 30, 754 CAS.
  11. K. Connors, Binding Constants, Wiley, New York, 1987 Search PubMed.
  12. A. Bothner-By, R. Stephens, J. Lee, C. Warren and R. Jeanloz, J. Am. Chem. Soc., 1984, 106, 811 CrossRef CAS.
  13. (a) K. Kano, M. Tashumi and S. Hashimoto, J. Org. Chem., 1991, 56, 6579 CrossRef CAS; (b) N. Rysanek, G. Le Bas, F. Villain and G. Tsoukaris, Acta Crystallogr., Sect. C, 1992, 48, 1466 CrossRef.
  14. J. Feeney, J. G. Batchelor, J. P. Albrand and G. C. K. Roberts, J. Magn. Reson., 1979, 33, 519 CAS.
  15. M. L. H. Green, L. Wong and A. Sella, Organometallics, 1992, 11, 2660 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.