N-Methyl-3,4-dihydroisoquinolinium-catalysed oxidation of calmagite by peracetic acid: kinetics and mechanism of catalyst inactivation

(Note: The full text of this document is currently only available in the PDF Version )

David J. Pocalyko, Janet L. Coope, Angel J. Carchi, Laurence Boen and Stephen A. Madison


Abstract

The azo dye, calmagite, is oxidized by peracetic acid and a catalytic amount of N-methyl-3,4-dihydroisoquinolinium p-toluenesulfonate by in situ formation of the corresponding oxaziridinium salt. The kinetics of the reaction have been examined under steady-state conditions in aqueous solution at pH 10. Under pseudo-first-order conditions employing an excess of calmagite relative to peracetic acid, no catalyst degradation is observed. Under near equimolar concentration of reactants, however, catalyst inactivation is found to be significant. Two major decomposition products have been isolated. Kinetic and product analyses indicate that catalyst inactivation occurs through the oxaziridinium salt intermediate by two major pathways; alkaline hydrolysis, which accounts for 60% of catalyst decomposition, and nucleophilic attack by peracid on the oxaziridinium salt.


References

  1. For a review of sulfonyloxaziridine chemistry see: (a) F. A. Davis and A. C. Sheppard, Tetrahedron, 1989, 54, 5703 CrossRef; (b) F. A. Davis and M. S. Haque, in Advances in Oxygenated Processes, ed. A. L. Baumstark, Jai Press, Greenwich, 1990, vol. 2, pp. 61–116 Search PubMed.
  2. F. A. Davis, R. Jenkins, Jr and S. G. Yocklovich, Tetrahedron Lett., 1978, 5157.
  3. F. A. Davis, R. Thimma Reddy, J. P. McCauley, R. M. Przeslawski and M. E. Harakal, J. Org. Chem., 1991, 56, 809 CrossRef CAS and references cited therein.
  4. F. A. Davis and S. G. Lal, J. Org. Chem., 1988, 53, 5004 CrossRef CAS.
  5. P. C. Bulman Page, J. P. Heer, D. Bethell, E. W. Collington and D. M. Andrews, Synlett, 1995, 773 CrossRef CAS.
  6. G. Hanquet and X. Lusinchi, Tetrahedron Lett., 1993, 34, 5299 CrossRef CAS.
  7. G. Hanquet and X. Lusinchi, Tetrahedron, 1994, 50, 12185 CrossRef CAS.
  8. G. Hanquet, X. Lusinchi and P. Milliet, Tetrahedron Lett., 1988, 29, 3941 CrossRef CAS.
  9. F. A. Davis, N. F. Abdul-Malik, S. B. Awad and M. E. Harakal, Tetrahedron Lett., 1981, 22, 917 CrossRef CAS.
  10. G. Hanquet, X. Lusinchi and P. Milliet, C. R. Acad. Sci. Paris, t.313, Serie 1991, 625 Search PubMed.
  11. V. K. Aggarwal and M. F. Wang, J. Chem. Soc., Chem. Commun., 1996, 191 RSC.
  12. Lange's Handbook of Chemistry, ed. J. A. Dean, McGraw-Hill, New York, 1985, 13th edn., Tables 5–8 Search PubMed.
  13. R. Schmid and V. N. Sapunov, Non-Formal Kinetics, Verlag Chemie, Weinheim, 1982, p. 39 Search PubMed.
  14. H. Ito, Chem. Pharm. Bull. (Japan), 1964, 12, 326 Search PubMed.
  15. (a) H. Takahashi, M. Iguchi, Y. Konda and M. Onda, Heterocycles, 1986, 24, 2629 CAS; (b) Z. Tronchet, J. Carbohydr. Chem., 1989, 8(2), 217; (c) Y. Miki, O. Tomii, M. Utsunomiya, S. Takemura and M. Ikeda, Chem. Pharm. Bull., 1986, 34(9), 3588 CAS.
  16. G. Hanquet, X. Lusinchi and P. Milliet, Tetrahedron, 1993, 49, 423 CrossRef.
  17. M. J. Cook, A. R. Katritzky, A. D. Page, R. D. Tack and H. Witek, Tetrahedron, 1976, 32, 1773 CrossRef CAS.
  18. S. Eldin, J. A. Digits, S. T. Huang and W. P. Jenks, J. Am. Chem. Soc., 1995, 117, 6631 CrossRef CAS; S. Eldin and W. P. Jenks, J. Am. Chem. Soc., 1995, 117, 4851 CrossRef CAS.
  19. S. Yamazaki, Chem. Lett., 1992, 823 CAS.
  20. J. G. Cannon and G. L. Wevster, J. Am. Pharm. Assoc. Sci. Ed., 1958, 47, 353 Search PubMed.
  21. C. F. Koelsch and N. G. Albertson, J. Am. Chem. Soc., 1953, 75, 2095 CrossRef CAS.
  22. Y. Ogata and Y. Sawaki, J. Am. Chem. Soc., 1973, 95, 4692 CrossRef CAS.
  23. R. Ahmed-Schofield and P. S. Mariano, J. Org. Chem., 1985, 50, 5667 CrossRef CAS.
  24. D. M. Davies and M. E. Deary, Analyst, 1988, 113, 1477 RSC.