New routes to benzothiophenes, isothiazoles and 1,2,3-dithiazoles

(Note: The full text of this document is currently only available in the PDF Version )

Kumaraswamy Emayan, Russell F. English, Panayiotis A. Koutentis and Charles W. Rees


Abstract

4,5-Dichloro-1,2,3-dithiazolium chloride 1 condenses with active methylene compounds, such as malononitrile, barbituric acid and Meldrum’s acid, to give the dithiazol-5-ylidene derivatives, such as 3, 4 and 5, in modest yields. Better yields are obtained from 4-chloro-1,2,3-dithiazole-5-thione 6. Thus the thione 6 condenses with diphenyldiazomethane in a very mild version of the Barton double extrusion synthesis of hindered alkenes; this requires neither heat to extrude nitrogen nor a phosphine to abstract sulfur, to give the alkene 7 (83%) (Scheme 1). This alkene rearranges at room temperature, with loss of hydrogen chloride and sulfur, to give the benzothiophene 13 (89%) in a new thiophene ring-forming reaction (Scheme 2). The thione 6 also condenses with tetracyanoethylene oxide to give a better yield of the dicyanomethylene compound 3 (70%) (Scheme 4). Compound 3, in turn, reacts with morpholine and with chloride ions (Scheme 5) to give 3-morpholino- 19 (60%) and 3-chloro- 20 (100%) isothiazole-4,5-dicarbonitrile, in a new isothiazole ring synthesis. Mechanisms are proposed for all of these reactions.


References

  1. R. Appel, H. Janssen, M. Siray and F. Knoch, Chem. Ber., 1985, 118, 1632 CrossRef CAS.
  2. T. Besson and C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 1995, 1659 RSC; T. Besson, K. Emayan and C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 1995, 2097 RSC; T. Besson and C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 1996, 2857 RSC; R. F. English, O. A. Rakitin, C. W. Rees and O. G. Vlasova, J. Chem. Soc., Perkin Trans. 1, 1997, 201 RSC.
  3. For a review, see F. S. Guziec, Jr. and L. J. SanFilippo, Tetrahedron, 1988, 44, 6241 Search PubMed.
  4. D. H. R. Barton, F. S. Guziec, Jr. and I. Shahak, J. Chem. Soc., Perkin Trans 1, 1974, 1794 RSC.
  5. W. Chew and D. N. Harpp, Tetrahedron Lett., 1992, 33, 45 CrossRef CAS; C. R. Williams, J. G. MacDonald, D. N. Harpp, R. Steudel and S. Förster, Sulfur Lett., 1992, 13, 247 Search PubMed.
  6. H. Lettré and K. Wick, Liebigs Ann. Chem., 1957, 603, 189 Search PubMed.
  7. S. Nakagawa, J. Okumura, F. Sakai, H. Hoshi and T. Naito, Tetrahedron Lett., 1970, 11, 3719 CrossRef.
  8. T. Higa and A. J. Krubsack, J. Org. Chem., 1976, 41, 3399 CrossRef CAS.
  9. A. Rouessac and J. Vialle, Bull. Soc. Chim. Fr., 1968, 2054 CAS; W. J. Middleton, J. Org. Chem., 1966, 31, 3731 CAS.
  10. W. J. Linn, O. W. Webster and R. E. Benson, J. Am. Chem. Soc., 1965, 87, 3651 CrossRef CAS.
  11. P. A. Koutentis, Ph.D. Thesis, University of London, 1997.
  12. W. J. Linn, J. Am. Chem. Soc., 1965, 87, 3665 CrossRef.
  13. T. Machiguchi, K. Okuma, M. Hoshino and Y. Kitahara, Tetrahedron Lett., 1973, 14, 2011 CrossRef.
  14. G. Rousselet, P. Capdevielle and M. Maumy, Tetrahedron Lett., 1993, 34, 6395 CrossRef CAS.
  15. D. J. Williams, Imperial College, personal communication.
  16. R. A. Carboni, Org. Synth. Coll. Vol. IV, 1963, 877.
Click here to see how this site uses Cookies. View our privacy policy here.