Stereoselective isomerisations of 4-(2′,5′-dimethoxyphenyl)-2,5-dimethyl-1,3-dioxolanes and their 2′-chloro-5′-methoxyphenyl analogues. Temperature-dependent diastereoselective formation of isochromanes

(Note: The full text of this document is currently only available in the PDF Version )

Robin G. F. Giles, Rodney W. Rickards and Badra S. Senanayake


Abstract

Stereoselective isomerisations of rel-(2R,4S,5R)-4-(2′,5′-dimethoxyphenyl)-2,5-dimethyl-1,3-dioxolane 1 and the 2∶1 epimeric mixture of rel-(2S,4R,5R)- and rel-(2R,4R,5R)-4-(2′,5′-dimethoxyphenyl)-2,5-dimethyl-1,3-dioxolanes 2 and 3 with titanium tetrachloride at –78 °C afford rel-(1R,3R,4S)- and rel-(1S,3R,4R)-4-hydroxy-5,8-dimethoxy-1,3-dimethylisochromanes 25 and 30, respectively. The yields are only moderate owing to the competing influence of the 2′-methoxy group in the starting dioxolanes, and are improved significantly when this group is replaced by a 2′-chloro substituent. rel-(2R,4S,5R)-4-(2′-Chloro-5′-methoxyphenyl)-2,5-dimethyl-1,3-dioxolane 13 under similar conditions is isomerised smoothly to rel-(1R,3R,4S)-5-chloro-4-hydroxy-8-methoxy-1,3-dimethylisochromane 34 as the sole reaction product. In contrast the C-2 epimers rel-(2R,4R,5R)- and rel-(2S,4R,5R)-4-(2′-chloro-5′-methoxyphenyl)-2,5-dimethyl-1,3-dioxolanes 14 and 15 each favour the formation of rel-(1R,3R,4R)-5-chloro-4-hydroxy-8-methoxy-1,3-dimethylisochromane 36 at –78 °C, while at –95 °C the 1S product 35 predominates. Dioxolane 14 isomerises more rapidly than its C-2 epimer 15, and both these reactions are under kinetic not thermodynamic control.


References

  1. R. G. F. Giles, R. W. Rickards and B. Senanayake, J. Chem. Soc., Perkin Trans. 1, 1996, 2241 RSC.
  2. (a) R. H. Thomson, Naturally Occurring Quinones, Academic Press, London, 1971 Search PubMed; (b) R. H. Thomson, Naturally Occurring Quinones III, Recent Advances, Chapman and Hall, London, 1987 Search PubMed; (c) R. H. Thomson, Naturally Occurring Quinones IV, Recent Advances, 4th edn., Blackie Academic and Professional, Chapman and Hall, London, 1997 Search PubMed.
  3. D. W. Cameron, R. I. T. Cromartie, D. G. I. Kingston and Lord Todd, J. Chem. Soc., 1964, 51 RSC.
  4. R. G. F. Giles, V. R. Lee Son and M. V. Sargent, Aust. J. Chem., 1990, 43, 777 CAS.
  5. (a) V. VanRheenen, R. C. Kelly and D. Y. Cha, Tetrahedron Lett., 1976, 1973 CrossRef CAS; (b) R. Ray and D. S. Matteson, Tetrahedron Lett., 1980, 21, 449 CrossRef CAS.
  6. G. Casiraghi, M. Cornia and G. Rassu, J. Org. Chem., 1988, 53, 4919 CrossRef CAS.
  7. M. K. Meilahn, C. N. Statham, J. L. McManaman and M. E. Munk, J. Org. Chem., 1975, 40, 3551 CrossRef CAS.
  8. A. Bhati, J. Chem. Soc., 1963, 730 Search PubMed.
  9. T. Kometani, Y. Takeuchi and E. Yoshii, J. Chem. Soc., Perkin Trans. 1, 1981, 1197 RSC.
  10. R. G. F. Giles, I. R. Green, V. I. Hugo, P. R. K. Mitchell and S. C. Yorke, J. Chem. Soc., Perkin Trans. 1, 1983, 2309 RSC.
  11. D. W. Cameron, D. G. I. Kingston, N. Sheppard and Lord Todd, J. Chem. Soc., 1964, 98 RSC.
  12. R. G. F. Giles, I. R. Green, V. I. Hugo, P. R. K. Mitchell and S. C. Yorke, J. Chem. Soc., Perkin Trans. 1, 1984, 2383 RSC.
  13. M. Karplus, J. Chem. Phys., 1960, 33, 1842 CrossRef CAS.
  14. P. A. Bartlett, W. S. Johnson and J. D. Elliott, J. Am. Chem. Soc., 1983, 105, 2088 CrossRef CAS For a discussion of related effects, see S. E. Denmark and N. G. Almstead, J. Am. Chem. Soc., 1991, 113, 8089 Search PubMed.
  15. R. G. F. Giles, I. R. Green, L. S. Knight, V. R. Lee Son and S. C. Yorke, J. Chem. Soc., Perkin Trans. 1, 1994, 865 RSC.
  16. A. L. J. Beckwith and S. H. Goh, J. Chem. Soc., Chem. Commun., 1983, 907 RSC.
  17. W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.