1,5-Asymmetric induction of chirality: diastereoselective addition of organoaluminium reagents and allylstannanes into aldehyde groups in the side-chain of π-allyltricarbonyliron lactone complexes

(Note: The full text of this document is currently only available in the PDF Version )

Steven V. Ley, Svenja Burckhardt, Liam R. Cox and Graham Meek


Abstract

π-Allyltricarbonyliron lactone complex 5, bearing an aldehyde group in the side-chain, can be easily prepared from commercially available (2E,4E[hair space][hair space])-ethyl hexadienoate and reacts with organoaluminium and allylstannane nucleophiles to afford secondary alcohols. In analogy with the corresponding ketone-substituted complexes, the lactone tether acts via the Fe(CO)3 moiety as a source of asymmetric induction. The levels of diastereoselectivity are generally reduced, however, compared with those obtained using ketone complexes. This can be attributed, at least in part, to the carbonyl appendage adopting both s-cis and s-trans conformations. The level of 1,5-asymmetric induction is strongly dependent upon the nature of the nucleophile in the case of the organoaluminium reactions and upon the reaction temperature in the case of BF3-mediated addition of allylstannanes into the aldehyde group.


References

  1. See preceding papers: (a) S. V. Ley, L. R. Cox, G. Meek, K.-H. Metten, C. Piqué and J. M. Worrall, J. Chem. Soc., Perkin Trans. 1, 1997, 3299 RSC; (b) S. V. Ley and L. R. Cox, J. Chem. Soc., Perkin Trans. 1, 1997, 3315 RSC.
  2. Part of this work has been previously communicated: S. V. Ley and G. Meek, Chem. Commun., 1996, 317 Search PubMed.
  3. M. S. Cooper, H. Heaney, A. J. Newbold and W. R. Sanderson, Synlett, 1990, 533 CrossRef.
  4. A. M. Horton, D. M. Hollinshead and S. V. Ley, Tetrahedron, 1984, 40, 1737 CrossRef CAS.
  5. R. Aumann, H. Ring, C. Krüger and R. Goddard, Chem. Ber., 1979, 112, 3644 CrossRef CAS.
  6. F. A. Cotton and J. M. Troup, J. Am. Chem. Soc., 1974, 96, 3438 CrossRef CAS; F. A. Cotton and J. M. Troup, J. Am. Chem. Soc., 1974, 96, 4422 CrossRef CAS.
  7. N. A. Clinton and C. P. Lillya, J. Am. Chem. Soc., 1970, 92, 3058 CrossRef CAS.
  8. R. Grée and J. P. Lellouche, in Advances in Metal-Organic Chemistry, ed. L. S. Liebeskind, JAI Press, Greenwich, 1995, vol. 4, pp. 129–273 Search PubMed; R. Grée, Synthesis, 1989, 341 Search PubMed and references therein.
  9. For a general review on allylation of carbonyl groups see: W. R. Roush, in Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 2, p. 1 and references therein Search PubMed.
  10. Y. Naruta, Y. Nishigaichi and K. Maruyama, Chem. Lett., 1986, 1857 CAS.
  11. S. Weigend and R. Brückner, Synthesis, 1996, 475 CrossRef CAS.
  12. J. A. Marshall, Chem. Rev., 1996, 96, 31 CrossRef CAS and references therein.
  13. For an example of oxidative decomplexation of π-allyltricarbonyliron lactone complexes see: G. D. Annis, S. V. Ley and R. Sivaramakrishnan, J. Chem. Soc., Perkin Trans. 1, 1981, 270 Search PubMed.
  14. H. Firouzabadi and E. Ghaderi, Tetrahedron Lett., 1978, 839 CrossRef CAS.
  15. D. D. Perrin and W. L. F. Armarego, Purification of Laboratory Chemicals, Pergamon Press, Oxford, 1988 Search PubMed.
  16. G. Zweifel and J. A. Miller, Org. React., 1984, 32, 375 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.