Ozone-mediated nitration of adamantane and derivatives with nitrogen dioxide: selectivity in the hydrogen abstraction by nitrogen trioxide and subsequent coupling of the resulting carbon radicals with nitrogen dioxide[hair space]1

(Note: The full text of this document is currently only available in the PDF Version )

Hitomi Suzuki and Nobuaki Nonoyama


Abstract

In the presence of ozone at –78 °C, nitrogen dioxide reacts rapidly and selectively with adamantane at a bridgehead position to give the corresponding nitro derivative as the sole major product. The relative reactivity has been determined for a series of 1-substituted adamantanes, which reveals that electron-withdrawing substituents exert a considerable influence on the ease of substitution at the γ-position as well as the distribution of the N- and O-functionalized products. The results may be rationalized in terms of the initial hydrogen abstraction by nitrogen trioxide, followed by rapid trapping of the resulting adamantyl radicals with nitrogen dioxide.


References

  1. The present work was published in a preliminary form: H. Suzuki and N. Nonoyama, J. Chem. Soc., Chem. Commun., 1996, 1783 Search PubMed.
  2. (a) N. Kornblum, H. O. Larson, R. K. Blackwood, D. D. Mooberry, E. P. Oliveto and G. E. Graham, J. Am. Chem. Soc., 1956, 78, 1497 CrossRef CAS; (b) N. Kornblum, R. A. Smiley, R. K. Blackwood and D. C. Iffland, J. Am. Chem. Soc., 1955, 77, 6269 CrossRef CAS.
  3. (a) G. A. Olah, P. Ramaiah, C. B. Rao, G. Sanford, R. Golam, N. J. Trivedi and J. A. Olah, J. Am. Chem. Soc., 1993, 115, 7246 CrossRef CAS; (b) G. A. Olah and C. H. Lin, J. Am. Chem. Soc., 1971, 93, 1259 CrossRef CAS.
  4. R. Duddu and R. Damavarapu, Synth. Commun., 1996, 26, 3495 CAS.
  5. For a survey, see: T. Mori and H. Suzuki, Synlett, 1995, 383 Search PubMed.
  6. P. Neta and R. E. Huie, J. Phys. Chem., 1986, 90, 4644 CrossRef CAS.
  7. (a) M. Mella, M. Freccero, T. Soldi, E. Fasani and A. Albini, J. Org. Chem., 1996, 61, 1413 CrossRef CAS; (b) E. Baciocchi, T. Del Giacco and G. V. Sebastiani, Tetrahedron Lett., 1987, 28, 1941 CrossRef CAS; (c) T. Shono, Y. Yamamoto, K. Takigawa, H. Maekawa, M. Ishifune and S. Kashimura, Chem. Lett., 1994, 1045 CAS; (d) I. Tabushi, S. Kojo and Z. Yoshida, Chem. Lett., 1974, 1431 CASThere are a few reports about the reaction of alkyl aromatics with nitrogen trioxide at benzylic position. However, these reactions are highly likely to proceed not via direct hydrogen abstraction but via deprotonation of a cation radical generated by one-electron transfer oxidation. See (e) E. Baciocchi, F. D'Acunzo, C. Galli and O. Lanzalunga, J. Chem. Soc., Perkin Trans. 2, 1996, 133 RSC; (f) T. Del Giacco, E. Baciocchi and S. Steenken, J. Phys. Chem., 1993, 97, 5451 CrossRef CAS.
  8. T. W. Martin, R. E. Rummel and R. C. Gross, J. Am. Chem. Soc., 1964, 86, 2595 CrossRef CAS Also see refs. 7a and 7b.
  9. A. Boughriet and M. Wartel, Electrochim. Acta, 1991, 36, 889 CrossRef CAS also see ref. 7c.
  10. R. P. Wayne, I. Barnes, P. Biggs, J. P. Burrows, C. E. Canosa-Mas, J. Hjorth, G. LeBras, G. K. Moortgat, D. Perner, G. Poulet, G. Restelli and H. Sidebottom, Atm. Environ., 1991, 25a, 1 Search PubMed.
  11. J. M. Tedder, Tetrahedron, 1982, 38, 313 CrossRef CAS.
  12. (a) G. J. Gleicher, J. L. Jackson, P. H. Owens and J. D. Unruh, Tetrahedron Lett., 1969, 833 CrossRef CAS; (b) P. H. Owens, G. J. Gleicher and L. M. Smith, Jr., J. Am. Chem. Soc., 1968, 90, 4122 CrossRef CAS.
  13. (a) I. Tabushi, Y. Aoyama, S. Kojo, J. Hamuro and Z. Yoshida, J. Am. Chem. Soc., 1972, 94, 1177 CrossRef CAS; (b) F. Minisci, F. Fontana, S. Araneo, F. Recupero, S. Banfi and S. Quici, J. Am. Chem. Soc., 1995, 117, 226 CrossRef CAS.
  14. M. J. S. Dewar, G. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.