Synthesis of 5,6-dihydropyrrolo[2,1-a]isoquinolines by rearrangement of 5-methyleneisoxazolidines generated from 1,3-dipolar cycloaddition of 3,4-dihydroisoquinoline N-oxides with allenes: a novel consecutive rearrangement to fused-ring pyrrole derivatives

(Note: The full text of this document is currently only available in the PDF Version )

Bao-Xiang Zhao and Shoji Eguchi


Abstract

5-Methyleneisoxazolidines 3, obtained by 1,3-dipolar cycloaddition of 1-methyl- and 1-(substituted methyl)isoquinoline N-oxides 1 with electron-deficient allenes 2, undergo thermal rearrangement when heated at 130–150 °C to afford two isomers, 4 and 5, of 5,6-dihydropyrrolo[2,1-a]isoquinoline derivatives. The formation of these fused-ring pyrroles can be rationalized on the basis of two competitive consecutive rearrangements occurring, one of which, as the minor route, involves an initial 1,3-hydrogen shift to give 4-isoxazolines followed by known rearrangement via acylaziridine intermediates, while the other, the major one, involves transient formation of pyrrolidin-3-ones followed by their novel rearrangement via 3,4 bond scission and cyclocondensation.


References

  1. (a) W. K. Anderson, A. R. Heider, N. Raju and J. A. Yucht, J. Med. Chem., 1988, 31, 2097 CrossRef CAS; (b) W. K. Anderson, H. L. McPherson, Jr., J. S. New and A. C. Rick, J. Med. Chem., 1984, 27, 1321 CrossRef CAS.
  2. (a) Y. Ban and M. Terashima, Tetrahedron Lett., 1961, 22, 796 CrossRef; (b) Y. Ban and M. Terashima, Chem. Pharm. Bull., 1965, 13, 775 CAS; (c) S.-I. Sakai, A. Kubo, M. Inaba, M. Katagiri and K. Tanno, Yakugaku Zasshi, 1966, 86, 856 Search PubMed; (d) C. Casagrande, A. Invernizzi, R. Ferrini and G. G. Ferrari, J. Med. Chem., 1968, 11, 765 CrossRef CAS.
  3. (a) R. Grigg, J. Montgomery and A. Somasunderam, Tetrahedron, 1992, 48, 10 431 CrossRef CAS; (b) R. Grigg, P. Kennewell, V. Savic and V. Sridharan, Tetrahedron, 1992, 48, 10 423 CrossRef CAS; (c) R. Grigg, P. Myers, A. Somasunderam and V. Sridharan, Tetrahedron, 1992, 48, 9735 CrossRef; (d) R. Grigg, H. Q. N. Gunaratne, D. Henderson and V. Sridharan, Tetrahedron, 1990, 46, 1599 CrossRef CAS.
  4. Y. Tominaga, Y. Shiroshita, T. Kurokawa, H. Gotou, Y. Matsuda and A. Hosomi, J. Heterocycl. Chem., 1989, 26, 477 CAS.
  5. H. H. Wasserman, R. Frechette, T. Oida and J. H. van Duzer, J. Org. Chem., 1989, 54, 6012 CrossRef CAS.
  6. W. Lösel, Chem. Ber., 1988, 121, 547.
  7. B.-X. Zhao, Y. Yu and S. Eguchi, Tetrahedron, 1996, 52, 12 049 CrossRef CAS.
  8. M. S. Algharib, J. Chem. Res., 1996, (S), 384 Search PubMed.
  9. P. Nemes, M. Kajtár-Peredy and P. Scheiber, Synlett, 1996, 623 CrossRef CAS.
  10. B.-X. Zhao and S. Eguchi, Tetrahedron, 1997, 53, 9575 CrossRef CAS.
  11. I. Bata, D. Korbonits, G. Héja, P. Kolonits and K. Simon, ACH-Models Chem., 1994, 131(3-4), 351 CAS.
  12. S. Eguchi, K. Asai and T. Sasaki, Heterocycles, 1989, 28, 125 CAS.
  13. J. E. Baldwin, R. G. Pudussery, A. K. Qureshi and B. B. Sklarz, J. Am. Chem. Soc., 1968, 90, 5325 CrossRef CAS.
  14. B.-X. Zhao, Y. Yu and S. Eguchi, Org. Prep. Proced. Int., 1997, 29(2), 185 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.