Structural separation of biological activities of jasmonates and related compounds

(Note: The full text of this document is currently only available in the PDF Version )

Siegfried Blechert, Christian Bockelmann, Oliver Brümmer, Martin Füßlein, Heidrun Gundlach, Georg Haider, Swen Hölder, Toni M. Kutchan, Elmar W. Weiler and Meinhart H. Zenk


Abstract

A wide range of compounds derived from the basic structure of jasmonic acid, when tested for biological activity in different bioassays (Eschscholzia californica elicitation, Bryonia dioica tendril coiling, tomato transpiration and senescence and barley senescence assays) display, in each of the assays, an activity profile that is distinctly characteristic and different between assays. While differences in uptake, metabolism and/or sequestration of the compounds may account for some of the effects observed, the data allow the conclusion that structural requirements are also different for different physiological responses regulated by jasmonates. While jasmonic acid itself is active in all assays employed, some of the compounds tested in our study display a much narrower range of biological effects. Thus, tailoring of jasmonate analogues for specific applications and lacking undesirable side effects should be possible.


References

  1. G. Sembdner and B. Parthier, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1993, 44, 569 Search PubMed.
  2. E. E. Farmer and C. A. Ryan, Proc. Natl. Acad. Sci. USA, 1990, 87, 7713 CAS.
  3. H. Gundlach, M. J. Mueller, T. M. Kutchan and M. H. Zenk, Proc. Natl. Acad. Sci. USA, 1992, 89, 2389 CAS.
  4. G. Quinkert, F. Adam and G. Dürner, Angew. Chem., 1982, 94, 866.
  5. H. J. Schäfer, Angew Chem., 1981, 93, 978.
  6. K. Schierle, J. Hopke, M.-L. Niedt, W. Boland and E. Steckhan, Tetrahedron Lett., 1996, 8715 CrossRef CAS.
  7. R. Sterzychi, Synthesis, 1979, 724 CrossRef CAS.
  8. J. Maibaum and D. H. Rich, J. Med. Chem., 1989, 32, 1571 CrossRef CAS.
  9. Y. Oikawa, K. Sugano and O. Yonemitsu, J. Org. Chem., 1978, 43, 2087 CrossRef CAS.
  10. M. Makosza, Two-Phase Reactions in Organic Chemistry, Academic Press, New York, 1980 Search PubMed.
  11. E. J. Corey and G. Schmidt, Tetrahedron Lett., 1979, 399 CrossRef CAS.
  12. G. Cahiez, A. Alexakis and J. F. Normant, Tetrahedron Lett., 1978, 3013 CrossRef.
  13. M. Ttamura and J. Kochi, Synthesis, 1971, 303 CrossRef CAS.
  14. H. Kataoka, T. Yamada, K. Goto and J. Tsuji, Tetrahedron, 1987, 43, 4107 CrossRef CAS.
  15. B. Parthier, Bot. Acta, 1991, 104, 446 Search PubMed.
  16. O. Miersch, Z. Naturforsch., Teil. B, 1991, 46, 1727 CAS.
  17. B. E. Maryanoff, A. B. Reitz and A. Duhl Emswiter, J. Am. Chem. Soc., 1985, 107, 217 CrossRef CAS.
  18. (a) R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. DiMare and M. J. O'Regan, J. Am. Chem. Soc., 1990, 112, 3875 CrossRef CAS; (b) H. H. Fox, K. B. Yab, J. Robbins, S. Cai and R. R. Schrock, Inorg. Chem., 1992, 31, 2287 CrossRef CAS.
  19. O. Brümmer, A. Rückert and S. Blechert, Chem. Eur. J., 1997, 3, 441 CAS.
  20. (a) E. Falkenstein, B. Groth, A. Mithöfer and E. W. Weiler, Planta, 1991, 185, 316 CrossRef CAS; (b) E. W. Weiler, T. Albrecht, Z.-Q. Xia, M. Luxem, H. Liβ, L. Andert and P. Spengler, Phytochemistry, 1993, 32, 591 CrossRef CAS.
  21. E. W. Weiler, T. M. Kutchan, T. Gorba, W. Brodschelm, U. Niesel and F. Bublitz, FEBS Lett., 1994, 345, 9 CrossRef CAS.
  22. S. Blechert, W. Brodschelm, S. Hölder, L. Kammerer, T. M. Kutchan, M. J. Mueller, Z.-Q. Xia and M. H. Zenk, Proc. Natl. Acad. Sci. USA, 1995, 92, 4099 CAS.
  23. T. M. Kutchan, J. Plant Physiol., 1993, 142, 502 CAS.
  24. J. A. Pallas, N. L. Paiva, C. Lamb and R. A. Dixon, Plant J., 1996, 10, 281 CrossRef CAS.
  25. E. M. Linsmaier and F. Skoog, Physiol. Plant., 1965, 18, 100 CAS.
  26. D. I. Arnon, Plant Physiol., 1949, 24, 1 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.