Antitumour polycyclic acridines. Part 1. Synthesis of 7H-pyrido- and 8H-quino-[4,3,2-kl]acridines by Graebe–Ullmann thermolysis of 9-(1,2,3-triazol-1-yl)acridines: application of differential scanning calorimetry to predict optimum cyclisation conditions

(Note: The full text of this document is currently only available in the PDF Version )

Damien J. Hagan, Elena Giménez-Arnau, Carl H. Schwalbe and Malcolm F. G. Stevens


Abstract

The thermal decomposition of a series of acridines substituted in the 9-position with 1,2,3-triazol-1-yl, benzotriazol-1-yl and naphthotriazol-1-yl groups has been studied by differential scanning calorimetry. Whereas the monocyclic triazole 7a shows a discrete melting endotherm followed by a decomposition exotherm corresponding to formation of the 7H-pyrido[4,3,2-kl]acridine 8, in the benzotriazoles 10a–e and naphthotriazole 10f these processes coincide with a single sharp exothermic transition attributed to cyclisation to polycyclic acridines 11a–f, respectively. The optimum conditions for the preparative scale synthesis of polycyclic acridines from triazole precursors utilised boiling diphenyl ether as the decomposition medium. A benzotriazol-1-ylacridine 10e substituted in the peri position with a methyl group behaved anomalously: as well as affording the expected 8H-quino[4,3,2-kl]acridine 11e, cyclisation also led to radical mediated loss of the methyl group to form the unsubstituted 8H-quino[4,3,2-kl]acridine 11a and H-abstraction from the methyl group leading to the benzoazepinoacridine 12. Radical cyclisation of 9-(2-iodoanilino)acridine 16 also gave 8H-quino[4,3,2-kl]acridine 11a. The crystal structure of 11a confirms the 8H tautomer arrangement with intermolecular N8–H · · · N13 hydrogen bonding and exhibits a polycyclic system that is planar with rms deviation 0.044 Å.


References

  1. A. Albert, The Acridines, Edward Arnold (Publishers) Ltd., London, UK, 2nd edn., 1966 Search PubMed.
  2. A. Albert, Selective Toxicity, Chapman and Hall, London, 7th edn., 1985, p. 379 Search PubMed.
  3. A. C. Mair and M. F. G. Stevens, J. Chem. Soc., Perkin Trans. 1, 1972, 161 RSC.
  4. W. A. Denny, in The Search for New Anticancer Drugs, ed. M. J. Waring and B. A. J. Ponder, Kluwer Academic Publishers, Dordrecht, 1992, pp. 19–54 Search PubMed.
  5. G. J. Finlay, J.-F. Riou and B. C. Baguley, Eur. J. Cancer, Part A, 1996, 32, 708 Search PubMed.
  6. B. C. Baguley, Anti-Cancer Drug Des., 1991, 6, 1 Search PubMed.
  7. W. A. Denny and B. C. Baguley, in Molecular Aspects of Anti-cancer Drug–DNA Interaction, ed. S. Neidle and M. J. Waring, Macmillan, London, 1994, pp. 270–311 Search PubMed.
  8. S. Houlbrook, C. M. Addison, S. L. Davies, J. Carmichael, I. J. Stratford, A. L. Harris and I. D. Hickson, Br. J. Cancer, 1995, 72, 1454 CAS.
  9. F. H. Drake, G. A. Hoffmann, H. F. Bartus, M. R. Mattern, S. T. Crooke and C. K. Mirabelli, Biochemistry, 1989, 28, 8154 CrossRef CAS.
  10. M. I. Sandri, D. Hochhauser, P. Ayton, R. C. Camplejohn, R. Whitehouse, H. Turley, K. Gatter, I. D. Hickson and A. L. Harris, Br. J. Cancer, 1996, 73, 1518 CAS.
  11. L. F. Liu, Annu. Rev. Biochem., 1989, 58, 351 CrossRef CAS.
  12. L. A. McDonald, G. S. Eldredge, L. R. Barrows and C. M. Ireland, J. Med. Chem., 1994, 37, 3819 CrossRef CAS.
  13. T. F. Molinski, Chem. Rev., 1993, 93, 1825 CrossRef CAS.
  14. C. K. Wong, PhD Thesis, Aston University, UK, 1980.
  15. G. Mitchell and C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 1987, 403 RSC.
  16. G. Mitchell and C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 1987, 413 RSC.
  17. G. A. Reynolds, J. Org. Chem., 1964, 29, 3733 CAS.
  18. J. L. Ford and P. Timmis, Pharmaceutical Thermal Analysis, Ellis Horwood, 1988 Search PubMed.
  19. A. Molina, J. J. Vaquero, J. L. García-Navio and J. Alvarez-Builla, Tetrahedron Lett., 1993, 34, 2673 CrossRef.
  20. W. A. Denny, G. J. Atwell and B. C. Baguley, J. Med. Chem., 1983, 26, 1625 CrossRef CAS.
  21. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, J. H. Jensen, S. Koseki, M. S. Gordon, K. A. Nguyen, T. L. Windus and S. T. Elbert, QCPE Bulletin, 1990, 10, 52 Search PubMed.
  22. C. K. Johnson, ORTEP, Report ORNL-5136, Oak Ridge National Laboratory, Tennessee, USA, 1976 Search PubMed.
  23. K. Gleu and S. Nitzsche, J. Prakt. Chem., 1939, 153, 200 CrossRef CAS.
  24. P. Main, G. Germain and M. M. Woolfson, MULTAN84, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data, Universities of York, England, and Louvain, Belgium, 1984 Search PubMed.
  25. G. M. Sheldrick, SHELXL93, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1993 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.